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Abstract1 
This paper demonstrates the tandem use of a finite automata 
learning algorithm and a utility planner for an adversarial 
robotic domain.  For many applications, robot agents need 
to predict the movement of objects in the environment and 
plan to avoid them. When the robot has no reasoning model 
of the object, machine learning techniques can be used to 
generate one. In our project, we learn a DFA model of an 
adversarial robot and use the automaton to predict the next 
move of the adversary.  The robot agent plans a path to 
avoid the adversary at the predicted location while fulfilling 
the goal requirements. 

Introduction 
The objective of this project is to research effective 
methods for learning the strategies of an adversary by 
observation. There are two popular approaches to 
outperforming an opponent in an adversarial game. One is 
to attempt to outperform the adversary by exploring a 
greater number of possible moves farther into the future.  
The second option is to create a model of the adversary’s 
thought processes, and then by predicting their move, to 
create a counter-strategy. The creation of a simple model of 
the adversary’s strategies is the method explored in this 
paper.  With this model, the agent then creates a plan to 
outperform the adversary. 

The testing environment for this work is a modification 
of a game titled “Hunt the Wumpus.” The active elements 
in the world are the wumpus and the agent. The agent’s 
goal is to exit the Wumpus World having collected as many 
gold bars as possible, while avoiding the wumpus and 
bottomless pits. The adversaries in the Wumpus World are 
the agent and the wumpus. One robot performs the role of 
the agent and the second robot is the wumpus. The wumpus 
has a simple set of strategies to follow, randomly selected 
at the beginning of each game. 

The agent predicts the move of the wumpus by learning a 
model of all the possible strategies of the wumpus. The 
reasoning model that the wumpus uses is a computationally 
bounded model. The agent can learn a finite automata 
representing the move selections for the strategies of the 
wumpus.  
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In addition to learning the finite automaton structure, the 
agent learns a probability distribution from each state to 
each following state based on previously seen behaviors of 
the wumpus. Using the probability distribution of a state, 
the agent predicts the most probable move the wumpus will 
execute next, or assigns a probability of occupation to all of 
the states the wumpus may move to. 

The agent creates a plan of steps to reach the desired 
goals through the use of a utility planner. The utility 
planner places a utility value and reward on each state of 
the world.  The utility value calculation is a function of the 
known positions of the pits, gold bars, and the wumpus. 
The value placed on each state of the world represents the 
desire of the agent to be in that state. For instance, if there 
is a pit in a location, it will have a negative value, because 
death is not something the agent wants. All of the world 
states have a utility value. The agent selects a move that 
places it in the state with the maximum utility value. 

The next section of the paper discuses related work on 
the use of a finite automaton to learn adversarial behavior 
in non-zero sum games, DFA learning, and utility planning.  
We then introduce the Wumpus World and changes made 
for using the robots, followed by an explanation of the 
finite automaton learning process and explain the learning 
of an automaton as the selection for learning an adversarial 
strategy.  The approach used for utility planning is then 
described, and finally, we discuss the findings. 

Related Work 

Learning the minimal DFA for a given set of positive and 
negative examples is a known NP-Hard problem (Gold, 
1967). There are a number of algorithms and approaches 
that in polynomial time learn an approximate minimal 
DFA. 
 One approach that stems from the later work of Gold is 
the US-L* algorithm proposed by Carmel and Markovitch, 
1995. The US-L* algorithm uses an observation table 
represented by (S, E, T) to represent the DFA. The 
observation table consists of the closed set of strings S, the 
tests E that are the suffix-closed set of strings, and a two- 
dimensional table T that maintains the output of the 
elements in the sets of S and E.  
 The RPNI algorithm (Oncina and Garcia, 1992) and the 
RPNI2 algorithm (Dupont, 1992) break the example set 



into sets of positive and negative examples. The positive 
example set becomes the initial FA tree structure. The 
negative example set becomes a test set to reduce the 
positive tree to a minimal DFA. The RPNI2 algorithm 
differs from the RPNI algorithm in that it performs the 
reduction incrementally. Incremental reduction of DFA can 
be implemented using homing sequences (Rivest and 
Shapire,1989). The proof that the RPNI algorithm for 
simple problems is PAC (Probably Approximately Correct) 
learnable is in Parekh and Hanovar, 1995.  

The RPNI algorithm is the algorithm used to learn the 
DFA representing the opponent strategies. The reason for 
this selection is the implementation to fit the algorithm to 
the domain is straightforward.  

To outsmart an adversary, there are two different 
approaches that may be taken.  The first approach is to 
explore more of the game space. Variations on the minimax 
algorithm perform this task. The second option is to learn a 
model of the adversaries' behavior and use that to predict 
their behavior. 

In learning a model of the opponent, the approach 
assumes the adversary uses a computationally bounded 
model to make move decisions instead of playing and 
searching for the minimax optimal move. The 
computational bounded model being used to make 
decisions is most often a finite automata (Freud, et al., 
1995). By learning the opponent model, the agent can gain 
a higher optimal performance.  

Learning the opponent model is being studied by Carmel 
and Markovitch(1994). They use a DFA learning algorithm 
based on Angluins L* (Angluin, 1987).  Another approach 
for learning the model of the DFA is by Mor, Goldman, 
and Rosneschein (1996), in that the agent knows how many 
states exist in the DFA and uses a payoff matrix to decide 
how states should interconnect. 
 The wumpus in the Wumpus World makes a move 
selection based on a finite automaton. This is different from 
many two player games, where both players are striving for 
the same goal. The desired outcome of the agent is to 
correctly model and predict the wumpus’ next move and 
plan a solution. With a correct prediction, the agent can 
then create a plan to outsmart the wumpus.  
 The planning agent used is a utility based planner.  An 
excellent source of discussion of reinforcement learning 
and the utility planner can be found in Reinforcement 
Learning by Richard S. Sutton and Andrew G. Barto.  The 
the utility based planner was chosen because the Wumpus 
World is compartmentalized into a grid of deterministic 
size and elements.  The only unknowns occur in dealing 
with the wumpus.  
 We chose to use robots as the wumpus and the agent for 
a more realistic environment than a simulator. The use of 
the robots also serves to increase the amount of uncertainty 
associated with the wumpus position. 

Wumpus World 
The Wumpus World domain is based on an early computer 

game.  The basis for the game is an agent who explores an 
N by N grid world while avoiding a creature named the 
wumpus. Additional elements of the world consist of 
bottomless pits (which don’t affect the wumpus), and bars 
of gold.  The objective of the game is to collect as many of 
the gold bars as possible, return to the initial grid location 
[1,1] and exit the cave. The information the agent senses 
each turn to aid in locating the gold and avoiding the 
wumpus and pits, is a five element percept.  If the agent is 
in a square containing the wumpus or directly adjacent 
squares the agent perceives a stench.  If  the agent is in a 
square directly adjacent to a pit it will perceive a breeze.  If 
there is a gold bar in the same location as the agent it will 
perceive glitter.  If the agent runs into a wall it will perceive 
a bump.  If the agent shoots its arrow and kills the wumpus 
it will hear a scream.  The actions allowed the agent are to 
move forward, turn left, turn right, grab gold, shoot the 
arrow, and climb out of the cave.  The actions allowed the 
wumpus are to move forward, turn left, turn right, and do 
nothing. 
 Two robots perform in the roles of the agent and the 
wumpus. Because of this changes are made to the Wumpus 
World definition to use the robot’s sonar ring instead of the 
five element percept. The sonar ring senses the walls of the 
world, the other robot, and obstacles.  Obstacles inserted 
into the world make the task of sensing the other robot 
more complex. The agent and wumpus possess the 
locations of the pits and gold bars, because the robots’ only 
input is the sonar ring. 
 The robots playing the roles of the agent and wumpus are 
Trilobots.  The Trilobot robots have an eight element sonar 
ring.  The sonar ring reads distance at 22.5 degree intervals.  
A picture of the robots in a portion of wumpus world is 
shown in Figure 1.  
  

 
Figure 1 

Learning the Wumpus Strategies 
The strategies that the wumpus can employ are to 1) move 
to a gold bar and circle it clockwise, 2) move to a gold bar 



obstacle until the Agent is close and then attack. The 
wumpus will only follow one of these strategies through a 
given game. A modified RPNI algorithm infers a DFA 
structure representative of the wumpus strategies given a 
series of sub-objectives. Each sub-objective is the 
fulfillment of part of the wumpus strategy. An example is 
that one of the wumpus strategies is to move to a gold bar 
and circle it clockwise. The sub-objectives that make up the 
strategy are the action of moving to the bar followed by 
circling the bar clockwise.  The sub-objective also 
describes elements of the task such as which of the up to 
three gold bars the wumpus should approach. 

The use of sub-objectives seems counter-intuitive. It 
would be logical to learn the wumpus strategies by 
representing the Wumpus World states as states in the 
automata, and the wumpus actions as the transitions. For an 
8x8 world there are 64 states to store, representing all 
locations where the wumpus can reside. Information on the 
agent position would also be needed (in case the wumpus is 
attacking the agent), but this squares the number of possible 
states. All possible configurations of gold bars and 
obstacles need representing because they too relate to the 
strategies. With all this information included in the state, an 
immense amount of information would be represented.  

Instead of representing the world state information, the 
sub-objectives perform this task. This creates an automaton 
of the repetitive elements of the wumpus strategies, and 
abstracts away the specifics of the Wumpus World domain. 
This representation reduces the amount of data to store and 
allows the method to scale to larger problems. The 
transitions from state to state instead of being a specific 
move, since the sub-objectives are states, are transitions of 
the wumpus from fulfilling one sub-objective to the state of 
fulfilling another.  

A modified RPNI algorithm learns a DFA structure 
representative of the five behavior patterns given a series of 
sub-objectives.  The sub-objectives are derived from the 
moves made by the wumpus as observed by the agent. The 
sub-objective classifications are 1)move closer to gold bar 
1,2 or 3, 2) move closer to obstacle 1,2,3, 3) attack the 
agent, 4) hide from the agent, 5) sit or do nothing, and 6) 
move closer to the north wall, south wall, east wall, or west 
wall. Each of the wumpus strategies is a combination of 
several of these sub-objectives. The agent determines the 
move made by the wumpus by comparing the previous and 
current believed positions of the wumpus. The sub-
objective determination begins by first, calculating relative 
distances between the wumpus and all the elements in the 
world. The relative distances compared with a rule base 
results in the most probable sub-objective. The agent 
retains the sub-objectives made from the offset of the trial 
in a transition list. 
 The algorithm chosen to learn the DFA is a modification 
of the RPNI algorithm (Oncia and Garcia 1992).  The 
RPNI algorithm performs an ordered search of an accepting 

DFA by attempting to merge consecutive elements of the 
prefix set.  The prefix set is a set of all of the prefixes of the 
acceptable strings. The first step is to create a 
PTA(instance+). The PTA(instance+) is a finite automata  
tree created from only the positive examples. Each state 
included in the PTA(instance+) has a corresponding 
element in the set of prefixes of the positive instance set. 
Each step of the algorithm attempts to merge a prefix of the 
positive instance set with possible suffixes of the 
PTA(instance+), while remaining consistent with the set of 
negative instances.   
 The RPNI algorithm uses a set of positive and a set of 
negative samples to derive a DFA based on the acceptance 
of states.  For the wumpus world all states are acceptor 
states since what is being looked for is the next move, not 
string acceptance or rejection.  Because there are no 
negative samples, we modify the RPNI algorithm to retract 
based on matching states and pattern repetition rather than 
on the accepting string.   

The modified RPNI algorithm begins by creating a 
PTA(instance+) just as in the original, with the instance+ 
set coming from the transition list. The prefix set that is 
incrementally searched and merged in RPNI does not carry 
over to the modified version. Instead of using the prefix set, 
the modified RPNI algorithm performs the  search space 
from the initial node. Each path is then searched for 
possible loops.  

For the Wumpus World the initial node is always sit. The 
nodes used in the DFA structure of the Wumpus World 
upon creation will point to themselves.  This saves a step 
during retraction, since for the domain each sub-objective 
can transition to itself. The initial structure is a sit node 
which upon receiving a sit returns to itself. Each edge also 
has a probability attached. The probability represents the 
number of times the agent observed the wumpus make the 
transition.  

 The agent updates a probability attached to each 
transition as it continues to observe the behaviors of the 
wumpus.  The agent uses these probabilities to predict the 
next sub-objective the wumpus will meet. An example 
learned automaton is in Figure 2. 

Utility Driven Planning 
Once the agent has learned a DFA representing the wumpus 
behavior patterns, the DFA predicts the next move of the 
wumpus and a utility update function determines a path for 
the agent. The agent uses a value iteration algorithm to 
calculate the utilities of each of the states in the wumpus 
domain.  The value iteration algorithm prescribes a path to 
gather the gold while avoiding the pits and wumpus.  Since 
the wumpus and agent move simultaneously, the value 
iteration algorithm runs each turn before the agent selects a 
move. 



 
Figure 2

The value iteration algorithm formula is 
π’[i] ← R[i] + maxa Σj Ma

ij π[j]. 
The value iteration serves to update the utility values in the 
policy (π), and calculate a new utility for each location The 
new utility value for a location is the sum of the reward for 
the state and the maximum utility value of all the states 
reachable from that location in a single move. After 
recalculating all of the utility values, the temporary policy  
becomes the action policy. 

The value iteration algorithm uses a reward array (R[]) 
<x, y, numgold>, a utility array (π[]) <x, y, transitions,  
numgold>, and a model (Ma

ij ) describing the agent’s 
moves to find a path through the wumpus domain. The 
reward array contains all of the rewards for all of the 
possible states the agent can reach. Each state in the reward 
array consists of an x and y location and the number of gold 
bars the agent has in possession at that time. Each state the 
agent can be in and each move the agent can make will 
have a separate utility value.  The state information for the 
agent in this table as in the reward array is the x and y 
location, and the number of gold bars the agent possesses at 
the time. The model describing the agent’s moves is a set of 
conditionals that emulate the agent in the environment. An 

example would be if the agent is next to and facing a wall 
he can not move into it, or if the agent is facing up and 
chooses to go forward his y location will increase by one.  

Because a close-to-optimal path is desired, each location 
in the reward array is initialized to -0.05.  If the agent 
knows or believes that there is a pit or wumpus in a given 
grid location, the reward for this location is -10.0.  This 
keeps the value iteration algorithm from prescribing a path 
through a lethal location.  Locations with gold receive a 
reward assignment of 1.0, 2.0, 3.0, and so on for as many 
gold bars that exist in the world.  The incremental values 
are assigned randomly and not in a specific order to create 
a shortest path length.  Location [1,1] is assigned a value of 
one more than any gold pieces, so that after the gold has 
been collected the agent will leave.  The utility array at the 
beginning of each turn is reset to all zeros.   

The agent will alternate between updating the utility 
array and testing the utilities returned to determine if a path 
to collect all of the gold bars and exit exists. Once a path to 
reach all goals exists, the utility planner will exit, and the 
first move of the path is executed. The first move of the 
path is the move that will have the highest utility for that 
location and possible wumpus location/s.  



The agent has two modes.  In the first mode, the agent 
can output a single sub-objective that has the maximum 
probability of being the sub-objective the wumpus is going 
to try to complete. For this case, the utility planner assigns 
the wumpus reward of negative twenty to the one location 
predicted by the automaton. Alternatively, the agent can be 
set to output all of the possible sub-objectives possible 
from the current sub-objective. The negative twenty reward 
of the wumpus is then distributed on all the possible world 
locations the wumpus could be in.  The reward is 
distributed by normalizing the probabilities of each sub-
objective and multiplying the value by negative twenty. If 
more than one sub-objective would have the wumpus move 
to the same location, the two rewards are summed.   

The utility planning algorithm performs well in the small 
Wumpus World domain. The algorithm will scale badly to 
larger domains as the policy increases in size the time to a 
solution does also. In order to maintain the utility solution 
methods for a plan that we were looking for the next choice 
may be to implement a Bayes network or neural network 
using the relational distances between objects with a vector 
for direction to perform the planning.  The other 
possibilities are to implement a similar utility planner with 
later research into controlling the size and time issues 
(Moore and Atkinson, 1993). 

Results 
 The first set of experiments compares the two predictive 
outputs of the automaton and a case with no predictive 
information.  The tests were run with a finite automaton 
trained on 25 and 50 trials.  A trial consists of a randomly 
created world and selected wumpus strategy, where each 
trial consists of 25 alternating turns in which the wumpus 
and agent both move. If the agent dies before reaching the 
twenty-fifth step, the trial ends.  During learning the 
automaton the pits can not harm the agent, and he hugs the 
wall of the world looking for the wumpus, observing only.  
The wumpus world is an 8x8 world in which object 
positions are randomly determined. 
 In testing, each trial is set to last fifty steps allowing the 
agent plenty of time to collect all the gold bars and return 
to the exit.  There were five test situations.  The first test set 

uses no automaton, and thus no predictive ability.  The 
second uses an automaton trained for twenty-five trials with 
the normalized return, “Uncertain” in Table 1. The third 
also uses an automaton trained for twenty-five trials but 
with the maximum prediction return, labeled “Max” in 
Table 1.  The fourth and fifth trials use an automaton 
trained for fifty trials with both of the return types, 
uncertain and max. 

The agent earns a specific number of points for each 
trial.  The points are -1000 for dying, -1 per step (to 
discourage lengthy plans), +1000 per gold bar collected, 
and +1000 for exiting. The points totaled for the fifty trials 
appear in the ”Total Points Earned” column in Table 1. 
These points are tallied strictly for comparison between the 
approaches and do not feed back into the algorithm. 

The results show that the use of the finite automaton to 
predict the wumpus move does somewhat protect the agent 
from the wumpus. As a result the agent is able to stay alive 
longer, for more steps, and collect more gold. 

The agent performs better overall in using the maximum 
prediction from the automaton. This is in part because the 
normative values which although represent the probabilities 
of where the wumpus could be more properly, spreads the 
negative reward of the wumpus over more than one state. 
The utility iteration algorithm is a greedy planner and will 
plan a path through states with a negative reward to get to 
states with positive rewards. This is also visible in the low 
average number of steps, the agent frequently would 
attempt to plot a path through things like pits if there was 
no quick way around them, in the search for a short path. 
 The positive reward assignment for each of the gold bars 
should ultimately be separated into different policies. Each 
policy then creates a path to one of the gold bars or the exit, 
and using a nearest neighbor or search to choose that policy 
to follow. By separating the reward, each policy would 
have fewer peaks and the valleys might be avoided better 
(Whitehead, Karlsson, and Tenenberg, 1993). 

 The second set of tests compares the normalized 
output of the learned finite automaton with the actual 
behavior of the wumpus.  For these tests, the learning of the 
finite automaton occurred over fifty trials. Each individual 
wumpus strategy was tested fifty times. The wumpus would 
output the sub-objective that he follows at  

Table 1: Comparison of the Predicting Methods. 
Test Average Number of 

Steps 
Total Gold 
Collected 

Times Killed by 
Wumpus 

Total Points 
Earned 

No FA 6.24 18 8 -18312 
FA-25 Uncertain 8.56 23 6 -6248 

FA-25 Max 8.63 25 3 1569 
FA-50 Uncertain 10.28 26 3 5486 

FA-50 Max 10.12 31 1 14494 
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Figure 3 
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Figure 4

each step.  To calculate each distribution, the output of the 
wumpus’ transition from sub-objective to sub-objective is 
tallied. This is similar to the method by which the agent 
learned his probability distribution. The difference is the 
information comes from the wumpus, not the agent. For 
example, if the wumpus strategy was to Move to the Gold 
and Circle Clockwise, he might output ‘move to gold 2’.  
For turn two, he might output ‘circle the gold bar 
clockwise’.  This would add one to the number of time the 
wumpus chose the sub-objective circle the gold bar 
clockwise from the sub-objective of ‘moving to gold 2’. 
 The probabilities for each of the sub-objective nodes is 
also totaled.  For each node, the sub-objective weights are 
normalized to probabilities so a direct comparison to the 
wumpus output is possible.  The comparisons of the sub-
objectives for the first move and the Hide From Agent 
strategy are in Figure 3 and Figure 4.  The y-axis is the 
percentage of times the sub-objective on the x-axis 
followed the sub-objective in the title of the graph.  The 
sub-objectives are represented as numbers 1) Sit, 2) 
Random, 3) Circle Gold Clockwise, 4) Circle Gold Counter 
Clockwise, 5) Attack Agent, 6) Move to Gold 1, 7) Move 
to Gold 2, 8) Move to Gold 3, 9) Move North, 10) Move 
South, 11) Move East, 12) Move West, 13) Hide from 

Agent, 14) Move to Obstacle 1, 15) Move to Obstacle 2, 
and 16) Move to Obstacle 3. 

The legend lists the lines as Series 1, the actual 
distribution and Series 2, the finite automaton distribution 
after training for fifty trials. 
 The comparison graphs show that the peaks of the finite 
automaton sub-objectives are on the same sub-objectives as 
in the actual distributions.  One of the reasons for 
differences is that the agent's viewpoint is skewed, and 
when the agent can not locate the wumpus, can not learn or 
predict his behavior.  The hide sub-objective shows this 
best. The agent saw few transitions to the ‘attacking the 
agent’ sub-objective. This is because the agent will seek out 
the wumpus, and in doing so come too close and be 
attacked by the wumpus who is already hiding. If the agent 
had not seen the wumpus hiding, ‘attacking the agent’ 
represents all the information the agent perceived.  Without 
the previous hiding information, a transition from ‘hiding’ 
to ‘attacking the agent’ is not incorporated into the 
automaton. 
 Another area of difference between the graphs is when 
the agent misclassifies the wumpus sub-objective. The 
method of comparing the relative distances from the 
wumpus with a set of rules and selecting the first match 



does not always lead to a correct match. This mismatching 
occurs when the wumpus moves toward an area near a 
number of different items. Without prior knowledge of the 
wumpus behavior strategy, the exact sub-objective can not 
be determined.  One extension to the rule matching method 
would be to assign probabilities to each of the rules fired, 
and select the rule that is most likely. 

Conclusion 
 The testing done shows that by learning a model of the 
adversaries behavior in a finite automaton, the adversaries’ 
behavior can be adequately predicted.  By predicting the 
next sub-objective of the wumpus the agent is able gather 
more gold, stay alive longer, and get a higher score. Also 
by comparing the probabilities learned by the finite 
automaton and the wumpus behavior strategies, the 
distributions maintain the same probabilistic peaks. As the 
finite automaton is trained more, the agent performs better.  
Further testing is needed to train the finite automaton more 
in the hope that the probability distribution become closer. 
 The utility planner generated successful plans from the 
given data. However, for better performance the planner 
should separate the different goals into different policies 
and merge the utilities or resulting chosen action instead of 
using a single global policy. Scalability is also an issue; the 
utility planner fits well to the small scale of the Wumpus 
World may not work so well for a larger domain.  
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