
Planning and Learning in an Adversarial Robotic Game

Gilbert Peterson and Diane Cook

University of Texas at Arlington
Box 19015

Arlington, TX 76019-0015
{gpeterso, cook}@cse.uta.edu

Abstract1
This paper demonstrates the tandem use of a finite automata
learning algorithm and a utility planner for an adversarial
robotic domain. For many applications, robot agents need
to predict the movement of objects in the environment and
plan to avoid them. When the robot has no reasoning model
of the object, machine learning techniques can be used to
generate one. In our project, we learn a DFA model of an
adversarial robot and use the automaton to predict the next
move of the adversary. The robot agent plans a path to
avoid the adversary at the predicted location while fulfilling
the goal requirements.

Introduction
The objective of this project is to research effective
methods for learning the strategies of an adversary by
observation. There are two popular approaches to
outperforming an opponent in an adversarial game. One is
to attempt to outperform the adversary by exploring a
greater number of possible moves farther into the future.
The second option is to create a model of the adversary’s
thought processes, and then by predicting their move, to
create a counter-strategy. The creation of a simple model of
the adversary’s strategies is the method explored in this
paper. With this model, the agent then creates a plan to
outperform the adversary.

The testing environment for this work is a modification
of a game titled “Hunt the Wumpus.” The active elements
in the world are the wumpus and the agent. The agent’s
goal is to exit the Wumpus World having collected as many
gold bars as possible, while avoiding the wumpus and
bottomless pits. The adversaries in the Wumpus World are
the agent and the wumpus. One robot performs the role of
the agent and the second robot is the wumpus. The wumpus
has a simple set of strategies to follow, randomly selected
at the beginning of each game.

The agent predicts the move of the wumpus by learning a
model of all the possible strategies of the wumpus. The
reasoning model that the wumpus uses is a computationally
bounded model. The agent can learn a finite automata
representing the move selections for the strategies of the
wumpus.

1 Copyright © 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

In addition to learning the finite automaton structure, the
agent learns a probability distribution from each state to
each following state based on previously seen behaviors of
the wumpus. Using the probability distribution of a state,
the agent predicts the most probable move the wumpus will
execute next, or assigns a probability of occupation to all of
the states the wumpus may move to.

The agent creates a plan of steps to reach the desired
goals through the use of a utility planner. The utility
planner places a utility value and reward on each state of
the world. The utility value calculation is a function of the
known positions of the pits, gold bars, and the wumpus.
The value placed on each state of the world represents the
desire of the agent to be in that state. For instance, if there
is a pit in a location, it will have a negative value, because
death is not something the agent wants. All of the world
states have a utility value. The agent selects a move that
places it in the state with the maximum utility value.

The next section of the paper discuses related work on
the use of a finite automaton to learn adversarial behavior
in non-zero sum games, DFA learning, and utility planning.
We then introduce the Wumpus World and changes made
for using the robots, followed by an explanation of the
finite automaton learning process and explain the learning
of an automaton as the selection for learning an adversarial
strategy. The approach used for utility planning is then
described, and finally, we discuss the findings.

Related Work

Learning the minimal DFA for a given set of positive and
negative examples is a known NP-Hard problem (Gold,
1967). There are a number of algorithms and approaches
that in polynomial time learn an approximate minimal
DFA.
 One approach that stems from the later work of Gold is
the US-L* algorithm proposed by Carmel and Markovitch,
1995. The US-L* algorithm uses an observation table
represented by (S, E, T) to represent the DFA. The
observation table consists of the closed set of strings S, the
tests E that are the suffix-closed set of strings, and a two-
dimensional table T that maintains the output of the
elements in the sets of S and E.
 The RPNI algorithm (Oncina and Garcia, 1992) and the
RPNI2 algorithm (Dupont, 1992) break the example set

into sets of positive and negative examples. The positive
example set becomes the initial FA tree structure. The
negative example set becomes a test set to reduce the
positive tree to a minimal DFA. The RPNI2 algorithm
differs from the RPNI algorithm in that it performs the
reduction incrementally. Incremental reduction of DFA can
be implemented using homing sequences (Rivest and
Shapire,1989). The proof that the RPNI algorithm for
simple problems is PAC (Probably Approximately Correct)
learnable is in Parekh and Hanovar, 1995.

The RPNI algorithm is the algorithm used to learn the
DFA representing the opponent strategies. The reason for
this selection is the implementation to fit the algorithm to
the domain is straightforward.

To outsmart an adversary, there are two different
approaches that may be taken. The first approach is to
explore more of the game space. Variations on the minimax
algorithm perform this task. The second option is to learn a
model of the adversaries' behavior and use that to predict
their behavior.

In learning a model of the opponent, the approach
assumes the adversary uses a computationally bounded
model to make move decisions instead of playing and
searching for the minimax optimal move. The
computational bounded model being used to make
decisions is most often a finite automata (Freud, et al.,
1995). By learning the opponent model, the agent can gain
a higher optimal performance.

Learning the opponent model is being studied by Carmel
and Markovitch(1994). They use a DFA learning algorithm
based on Angluins L* (Angluin, 1987). Another approach
for learning the model of the DFA is by Mor, Goldman,
and Rosneschein (1996), in that the agent knows how many
states exist in the DFA and uses a payoff matrix to decide
how states should interconnect.
 The wumpus in the Wumpus World makes a move
selection based on a finite automaton. This is different from
many two player games, where both players are striving for
the same goal. The desired outcome of the agent is to
correctly model and predict the wumpus’ next move and
plan a solution. With a correct prediction, the agent can
then create a plan to outsmart the wumpus.
 The planning agent used is a utility based planner. An
excellent source of discussion of reinforcement learning
and the utility planner can be found in Reinforcement
Learning by Richard S. Sutton and Andrew G. Barto. The
the utility based planner was chosen because the Wumpus
World is compartmentalized into a grid of deterministic
size and elements. The only unknowns occur in dealing
with the wumpus.
 We chose to use robots as the wumpus and the agent for
a more realistic environment than a simulator. The use of
the robots also serves to increase the amount of uncertainty
associated with the wumpus position.

Wumpus World
The Wumpus World domain is based on an early computer

game. The basis for the game is an agent who explores an
N by N grid world while avoiding a creature named the
wumpus. Additional elements of the world consist of
bottomless pits (which don’t affect the wumpus), and bars
of gold. The objective of the game is to collect as many of
the gold bars as possible, return to the initial grid location
[1,1] and exit the cave. The information the agent senses
each turn to aid in locating the gold and avoiding the
wumpus and pits, is a five element percept. If the agent is
in a square containing the wumpus or directly adjacent
squares the agent perceives a stench. If the agent is in a
square directly adjacent to a pit it will perceive a breeze. If
there is a gold bar in the same location as the agent it will
perceive glitter. If the agent runs into a wall it will perceive
a bump. If the agent shoots its arrow and kills the wumpus
it will hear a scream. The actions allowed the agent are to
move forward, turn left, turn right, grab gold, shoot the
arrow, and climb out of the cave. The actions allowed the
wumpus are to move forward, turn left, turn right, and do
nothing.
 Two robots perform in the roles of the agent and the
wumpus. Because of this changes are made to the Wumpus
World definition to use the robot’s sonar ring instead of the
five element percept. The sonar ring senses the walls of the
world, the other robot, and obstacles. Obstacles inserted
into the world make the task of sensing the other robot
more complex. The agent and wumpus possess the
locations of the pits and gold bars, because the robots’ only
input is the sonar ring.
 The robots playing the roles of the agent and wumpus are
Trilobots. The Trilobot robots have an eight element sonar
ring. The sonar ring reads distance at 22.5 degree intervals.
A picture of the robots in a portion of wumpus world is
shown in Figure 1.

Figure 1

Learning the Wumpus Strategies
The strategies that the wumpus can employ are to 1) move
to a gold bar and circle it clockwise, 2) move to a gold bar

obstacle until the Agent is close and then attack. The
wumpus will only follow one of these strategies through a
given game. A modified RPNI algorithm infers a DFA
structure representative of the wumpus strategies given a
series of sub-objectives. Each sub-objective is the
fulfillment of part of the wumpus strategy. An example is
that one of the wumpus strategies is to move to a gold bar
and circle it clockwise. The sub-objectives that make up the
strategy are the action of moving to the bar followed by
circling the bar clockwise. The sub-objective also
describes elements of the task such as which of the up to
three gold bars the wumpus should approach.

The use of sub-objectives seems counter-intuitive. It
would be logical to learn the wumpus strategies by
representing the Wumpus World states as states in the
automata, and the wumpus actions as the transitions. For an
8x8 world there are 64 states to store, representing all
locations where the wumpus can reside. Information on the
agent position would also be needed (in case the wumpus is
attacking the agent), but this squares the number of possible
states. All possible configurations of gold bars and
obstacles need representing because they too relate to the
strategies. With all this information included in the state, an
immense amount of information would be represented.

Instead of representing the world state information, the
sub-objectives perform this task. This creates an automaton
of the repetitive elements of the wumpus strategies, and
abstracts away the specifics of the Wumpus World domain.
This representation reduces the amount of data to store and
allows the method to scale to larger problems. The
transitions from state to state instead of being a specific
move, since the sub-objectives are states, are transitions of
the wumpus from fulfilling one sub-objective to the state of
fulfilling another.

A modified RPNI algorithm learns a DFA structure
representative of the five behavior patterns given a series of
sub-objectives. The sub-objectives are derived from the
moves made by the wumpus as observed by the agent. The
sub-objective classifications are 1)move closer to gold bar
1,2 or 3, 2) move closer to obstacle 1,2,3, 3) attack the
agent, 4) hide from the agent, 5) sit or do nothing, and 6)
move closer to the north wall, south wall, east wall, or west
wall. Each of the wumpus strategies is a combination of
several of these sub-objectives. The agent determines the
move made by the wumpus by comparing the previous and
current believed positions of the wumpus. The sub-
objective determination begins by first, calculating relative
distances between the wumpus and all the elements in the
world. The relative distances compared with a rule base
results in the most probable sub-objective. The agent
retains the sub-objectives made from the offset of the trial
in a transition list.
 The algorithm chosen to learn the DFA is a modification
of the RPNI algorithm (Oncia and Garcia 1992). The
RPNI algorithm performs an ordered search of an accepting

DFA by attempting to merge consecutive elements of the
prefix set. The prefix set is a set of all of the prefixes of the
acceptable strings. The first step is to create a
PTA(instance+). The PTA(instance+) is a finite automata
tree created from only the positive examples. Each state
included in the PTA(instance+) has a corresponding
element in the set of prefixes of the positive instance set.
Each step of the algorithm attempts to merge a prefix of the
positive instance set with possible suffixes of the
PTA(instance+), while remaining consistent with the set of
negative instances.
 The RPNI algorithm uses a set of positive and a set of
negative samples to derive a DFA based on the acceptance
of states. For the wumpus world all states are acceptor
states since what is being looked for is the next move, not
string acceptance or rejection. Because there are no
negative samples, we modify the RPNI algorithm to retract
based on matching states and pattern repetition rather than
on the accepting string.

The modified RPNI algorithm begins by creating a
PTA(instance+) just as in the original, with the instance+
set coming from the transition list. The prefix set that is
incrementally searched and merged in RPNI does not carry
over to the modified version. Instead of using the prefix set,
the modified RPNI algorithm performs the search space
from the initial node. Each path is then searched for
possible loops.

For the Wumpus World the initial node is always sit. The
nodes used in the DFA structure of the Wumpus World
upon creation will point to themselves. This saves a step
during retraction, since for the domain each sub-objective
can transition to itself. The initial structure is a sit node
which upon receiving a sit returns to itself. Each edge also
has a probability attached. The probability represents the
number of times the agent observed the wumpus make the
transition.

 The agent updates a probability attached to each
transition as it continues to observe the behaviors of the
wumpus. The agent uses these probabilities to predict the
next sub-objective the wumpus will meet. An example
learned automaton is in Figure 2.

Utility Driven Planning
Once the agent has learned a DFA representing the wumpus
behavior patterns, the DFA predicts the next move of the
wumpus and a utility update function determines a path for
the agent. The agent uses a value iteration algorithm to
calculate the utilities of each of the states in the wumpus
domain. The value iteration algorithm prescribes a path to
gather the gold while avoiding the pits and wumpus. Since
the wumpus and agent move simultaneously, the value
iteration algorithm runs each turn before the agent selects a
move.

Figure 2

The value iteration algorithm formula is
π’[i] ← R[i] + maxa Σj Ma

ij π[j].
The value iteration serves to update the utility values in the
policy (π), and calculate a new utility for each location The
new utility value for a location is the sum of the reward for
the state and the maximum utility value of all the states
reachable from that location in a single move. After
recalculating all of the utility values, the temporary policy
becomes the action policy.

The value iteration algorithm uses a reward array (R[])
<x, y, numgold>, a utility array (π[]) <x, y, transitions,
numgold>, and a model (Ma

ij) describing the agent’s
moves to find a path through the wumpus domain. The
reward array contains all of the rewards for all of the
possible states the agent can reach. Each state in the reward
array consists of an x and y location and the number of gold
bars the agent has in possession at that time. Each state the
agent can be in and each move the agent can make will
have a separate utility value. The state information for the
agent in this table as in the reward array is the x and y
location, and the number of gold bars the agent possesses at
the time. The model describing the agent’s moves is a set of
conditionals that emulate the agent in the environment. An

example would be if the agent is next to and facing a wall
he can not move into it, or if the agent is facing up and
chooses to go forward his y location will increase by one.

Because a close-to-optimal path is desired, each location
in the reward array is initialized to -0.05. If the agent
knows or believes that there is a pit or wumpus in a given
grid location, the reward for this location is -10.0. This
keeps the value iteration algorithm from prescribing a path
through a lethal location. Locations with gold receive a
reward assignment of 1.0, 2.0, 3.0, and so on for as many
gold bars that exist in the world. The incremental values
are assigned randomly and not in a specific order to create
a shortest path length. Location [1,1] is assigned a value of
one more than any gold pieces, so that after the gold has
been collected the agent will leave. The utility array at the
beginning of each turn is reset to all zeros.

The agent will alternate between updating the utility
array and testing the utilities returned to determine if a path
to collect all of the gold bars and exit exists. Once a path to
reach all goals exists, the utility planner will exit, and the
first move of the path is executed. The first move of the
path is the move that will have the highest utility for that
location and possible wumpus location/s.

The agent has two modes. In the first mode, the agent
can output a single sub-objective that has the maximum
probability of being the sub-objective the wumpus is going
to try to complete. For this case, the utility planner assigns
the wumpus reward of negative twenty to the one location
predicted by the automaton. Alternatively, the agent can be
set to output all of the possible sub-objectives possible
from the current sub-objective. The negative twenty reward
of the wumpus is then distributed on all the possible world
locations the wumpus could be in. The reward is
distributed by normalizing the probabilities of each sub-
objective and multiplying the value by negative twenty. If
more than one sub-objective would have the wumpus move
to the same location, the two rewards are summed.

The utility planning algorithm performs well in the small
Wumpus World domain. The algorithm will scale badly to
larger domains as the policy increases in size the time to a
solution does also. In order to maintain the utility solution
methods for a plan that we were looking for the next choice
may be to implement a Bayes network or neural network
using the relational distances between objects with a vector
for direction to perform the planning. The other
possibilities are to implement a similar utility planner with
later research into controlling the size and time issues
(Moore and Atkinson, 1993).

Results
 The first set of experiments compares the two predictive
outputs of the automaton and a case with no predictive
information. The tests were run with a finite automaton
trained on 25 and 50 trials. A trial consists of a randomly
created world and selected wumpus strategy, where each
trial consists of 25 alternating turns in which the wumpus
and agent both move. If the agent dies before reaching the
twenty-fifth step, the trial ends. During learning the
automaton the pits can not harm the agent, and he hugs the
wall of the world looking for the wumpus, observing only.
The wumpus world is an 8x8 world in which object
positions are randomly determined.
 In testing, each trial is set to last fifty steps allowing the
agent plenty of time to collect all the gold bars and return
to the exit. There were five test situations. The first test set

uses no automaton, and thus no predictive ability. The
second uses an automaton trained for twenty-five trials with
the normalized return, “Uncertain” in Table 1. The third
also uses an automaton trained for twenty-five trials but
with the maximum prediction return, labeled “Max” in
Table 1. The fourth and fifth trials use an automaton
trained for fifty trials with both of the return types,
uncertain and max.

The agent earns a specific number of points for each
trial. The points are -1000 for dying, -1 per step (to
discourage lengthy plans), +1000 per gold bar collected,
and +1000 for exiting. The points totaled for the fifty trials
appear in the ”Total Points Earned” column in Table 1.
These points are tallied strictly for comparison between the
approaches and do not feed back into the algorithm.

The results show that the use of the finite automaton to
predict the wumpus move does somewhat protect the agent
from the wumpus. As a result the agent is able to stay alive
longer, for more steps, and collect more gold.

The agent performs better overall in using the maximum
prediction from the automaton. This is in part because the
normative values which although represent the probabilities
of where the wumpus could be more properly, spreads the
negative reward of the wumpus over more than one state.
The utility iteration algorithm is a greedy planner and will
plan a path through states with a negative reward to get to
states with positive rewards. This is also visible in the low
average number of steps, the agent frequently would
attempt to plot a path through things like pits if there was
no quick way around them, in the search for a short path.
 The positive reward assignment for each of the gold bars
should ultimately be separated into different policies. Each
policy then creates a path to one of the gold bars or the exit,
and using a nearest neighbor or search to choose that policy
to follow. By separating the reward, each policy would
have fewer peaks and the valleys might be avoided better
(Whitehead, Karlsson, and Tenenberg, 1993).

 The second set of tests compares the normalized
output of the learned finite automaton with the actual
behavior of the wumpus. For these tests, the learning of the
finite automaton occurred over fifty trials. Each individual
wumpus strategy was tested fifty times. The wumpus would
output the sub-objective that he follows at

Table 1: Comparison of the Predicting Methods.
Test Average Number of

Steps
Total Gold
Collected

Times Killed by
Wumpus

Total Points
Earned

No FA 6.24 18 8 -18312
FA-25 Uncertain 8.56 23 6 -6248

FA-25 Max 8.63 25 3 1569
FA-50 Uncertain 10.28 26 3 5486

FA-50 Max 10.12 31 1 14494

First Move Distributions

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SubObjective

Pe
rc

en
ta

ge

Series1

Series2

Figure 3

HideFromAgent

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SubObjective

Pe
rc

en
ta

ge

Series1

Series2

Figure 4

each step. To calculate each distribution, the output of the
wumpus’ transition from sub-objective to sub-objective is
tallied. This is similar to the method by which the agent
learned his probability distribution. The difference is the
information comes from the wumpus, not the agent. For
example, if the wumpus strategy was to Move to the Gold
and Circle Clockwise, he might output ‘move to gold 2’.
For turn two, he might output ‘circle the gold bar
clockwise’. This would add one to the number of time the
wumpus chose the sub-objective circle the gold bar
clockwise from the sub-objective of ‘moving to gold 2’.
 The probabilities for each of the sub-objective nodes is
also totaled. For each node, the sub-objective weights are
normalized to probabilities so a direct comparison to the
wumpus output is possible. The comparisons of the sub-
objectives for the first move and the Hide From Agent
strategy are in Figure 3 and Figure 4. The y-axis is the
percentage of times the sub-objective on the x-axis
followed the sub-objective in the title of the graph. The
sub-objectives are represented as numbers 1) Sit, 2)
Random, 3) Circle Gold Clockwise, 4) Circle Gold Counter
Clockwise, 5) Attack Agent, 6) Move to Gold 1, 7) Move
to Gold 2, 8) Move to Gold 3, 9) Move North, 10) Move
South, 11) Move East, 12) Move West, 13) Hide from

Agent, 14) Move to Obstacle 1, 15) Move to Obstacle 2,
and 16) Move to Obstacle 3.

The legend lists the lines as Series 1, the actual
distribution and Series 2, the finite automaton distribution
after training for fifty trials.
 The comparison graphs show that the peaks of the finite
automaton sub-objectives are on the same sub-objectives as
in the actual distributions. One of the reasons for
differences is that the agent's viewpoint is skewed, and
when the agent can not locate the wumpus, can not learn or
predict his behavior. The hide sub-objective shows this
best. The agent saw few transitions to the ‘attacking the
agent’ sub-objective. This is because the agent will seek out
the wumpus, and in doing so come too close and be
attacked by the wumpus who is already hiding. If the agent
had not seen the wumpus hiding, ‘attacking the agent’
represents all the information the agent perceived. Without
the previous hiding information, a transition from ‘hiding’
to ‘attacking the agent’ is not incorporated into the
automaton.
 Another area of difference between the graphs is when
the agent misclassifies the wumpus sub-objective. The
method of comparing the relative distances from the
wumpus with a set of rules and selecting the first match

does not always lead to a correct match. This mismatching
occurs when the wumpus moves toward an area near a
number of different items. Without prior knowledge of the
wumpus behavior strategy, the exact sub-objective can not
be determined. One extension to the rule matching method
would be to assign probabilities to each of the rules fired,
and select the rule that is most likely.

Conclusion
 The testing done shows that by learning a model of the
adversaries behavior in a finite automaton, the adversaries’
behavior can be adequately predicted. By predicting the
next sub-objective of the wumpus the agent is able gather
more gold, stay alive longer, and get a higher score. Also
by comparing the probabilities learned by the finite
automaton and the wumpus behavior strategies, the
distributions maintain the same probabilistic peaks. As the
finite automaton is trained more, the agent performs better.
Further testing is needed to train the finite automaton more
in the hope that the probability distribution become closer.
 The utility planner generated successful plans from the
given data. However, for better performance the planner
should separate the different goals into different policies
and merge the utilities or resulting chosen action instead of
using a single global policy. Scalability is also an issue; the
utility planner fits well to the small scale of the Wumpus
World may not work so well for a larger domain.

References
Angluin, D. 1987. Learning Regular Sets from Queries and
Counterexamples. Information and Computation 75: 87-
106.

Carmel, D. and Markovitch, S. 1994. Unsupervised
Learning of Finite Automata: A Practical Approach.
Technical Report CIS report 9504.

Carmel, D. and Markovitch, S. 1994. Learning Models of
Opponent’s Strategies in Game Playing. Technical Report
CIS report 9318, and CIS report 9305.

Dupont, P. 1994. Incremental Regular Inference. In Miclet,
L., and Higuera, C., eds., Proceedings of the Third ICGI-
96, Lecture Notes in Artificial Intelligence 1147:
222-237. Montpellier, France: Springer.

Freud, Y., Kearns, M., Mansour, Y. Ron, D., Rubinfeld, R.,
and Shapire, R. E. 1995. Efficient Algorithms for Learning
to Play Repeated Games Against Computationally Bounded
Adversaries. Proceedings of the 36th Annual Symposium on
Foundations of Computer Science.

Gold, E. M. 1978. Complexity of automaton identification
from given data. Information and Control 37(3): 302-320.

Oncina, J. and Garcia, P. 1992. Inferring Regular
Languages in Polynomial Updated Time. Pattern
Recognition and Image Analysis: Selected Papers from the
IVth Spanish Symposium: 49-61.

Mor, Y., Goldman, C., and Rosenchein, J. S. 1996. Learn
Your Opponent’s Strategy (in Polynomial Time)!.

Moore, Andrew W., and Atkeson, Christopher G. 1993.
Memory-based Reinforcement Learning: Converging with
Less Data and Less Real Time. Robot Learning. 79-104.

Olivera, A. L. and Edwards, S. 1996. Limits of Exact
Algorithms For Inference of Minimum Size Finite State
Machines. Proceedings of the Seventh International
Workshop on Algorithmic Learning Theory(ALT’96).

Parekh, R. G. and Honavar, V. G.. 1997. Learning DFA
from Simple Examples. Proceedings of the Eighth
International Workshop on Algorithmic Learning Theory
(ALT'97), Sendai, Japan. Oct 6-8, ‘97 (To appear)

Rivest, R. L. and Schapire, R. E. 1989. Inference of finite
automata using homing sequences. Proceedings of the 21st
ACM Symposium on Theory and Computing: 411-420.

Russel, S. J. and Norvig, P. 1995. Artificial Intelligence A
Modern Approach. New Jersey: Prentice Hall.

Sahota, M. K. 1994. Reactive deliberation: An architecture
for real-time intelligent control in dynamic environments.
Proceedings of the 12th National Conference on Artificial
Intelligence, 1303.

Sutton, R. S. 1995. TD Models: Modeling the World at a
Mixture of Time Scales. Proceeding of the 12th
International Conference on Machine Learning: 531-539.

Sutton, R. S. and Barto, A. G. 1998. Reinforcment
Learning: an introduction. MIT Press, Cambridge,
Massachusetts.

Whitehead, S., Karlsson, J., and Tenenberg, J.1993.
Learning Multiple Goal Behavior via Task Decomposition
and Dynamic Policy Merging. Robot Learning. 45-78.

