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Abstract

We have developed a dedsion-theoretic planner based
upon the Graphpgan planning algorithm, DT-Graphdan.
DT-Graphdan reasons abou probabilities, costs, and
rewards at a propositional level, recnstructing limited
state information. We ae gplying the planner to ou roba
task architedure to function ona miniature golf domain.
By incorporating dedsion theory into planning, we seek to
reduce the representational gap between behavior-based
robatic controll ers and constraint-based symbadli ¢ planners.

Introduction

This paper discuses DT-Graphdan, a dedsion-theoretic
planner that we use & the planning and sequencing layers
for a layered robaic achitecure. By using a planner at
bath the symbdlic planner level and the sequencer level
we hope for areduction d the work needed to reconfigure
aroba for a new task. We will verify this by creaing ore
set of behavior controllers for our robds and
demonstrating the dfediveness of the antrollers on
multi ple diverse plans.

The method d developing task control software for
robas we aldressis a layering approach. This approach
generally consists of a symbdlic planner, atask sequencer,
and a behavioral robaic controller. The task sequencer is
resporsible for bregking a command from an abstrad plan
into seled roba-level adions and behaviors to exeaute.
This representation leads to a robust functioning software
control for a roba on a singe task [Bonmas® and
Kortenkamp, 1994. When it is necessary to reconfigure
the roba for a new task, the sequencer receves new
sequences and the behavior controller gets additional
behaviors.

The use of dedsion theory to gude the behavior of a
roba isafamiliar concept. We expand onthis ideg using
dedsion theory at a higher reasoning level to generate a
plan. The use of planning over other methods gems from
the desire to generate a quick workable set of adions,
comprehendible to bah the roba and wser for domains
with dyremic operating condtions. We hope to show that
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this is effedive in ou miniature gaf domain in
comparisonto a strictly behavioral approach.

Our planner, DT-Graphdan, adds dedsion-theoretic
reasoning to the framework of the Graphpan algorithm,
extending the planner to hande probabilistic adions as
well as utility driven search [Blum and Furst, 1995. DT-
Graphdan returns the first acceptable plan found meding
a user-defined threshald, for a user spedfied gaal set. This
extends recent work condwcted on Graphgdan to hande
probabiliti es [Blum and Langford, 1999.

The development of DT-Graphdan was undertaken
because dedsion-theoretic methods represent certain
elements in robaic domains better than symbadlic
methods. For instance, in the miniature galf domain, that
isthe gplication for our roba architedure, the roba has
the dhoice between picking upthe ball and doppngit in
the aup, or attemptingto push the ball into the aup, Figure
1. By picking upand d-oppng the ball, the roba suffers a
two-stroke penalty but has alarge probability of achieving
the task of getting the ball into the aup. If the roba
attempts to push the ball into the hadle, the stroke penalty
is nat as high, but the probability of successis not as
gred. Based onthe @st of pushing with its probability of
successand the st of depositing the ball with its higher
probability of success the planner makes a doice of
which plan to pusue.

Alternatively, ancther general applicaion d dedsion
theoretic comparison trades off between risk and reward,
comparing the risk of an adion with its chance of success
to ancther. The aent must chocse between an a risky
move with a low probability of successbut grea potential
rewards compared with the utility of a cnservative move
with a higher probability of success and moderate
potential rewards.

Our approach dffersin that we developed a dedsion
theoretic planner to replacethe symbadlic planner. We use
a dedsiontheoretic planner to formally reason abou the
uncertainty that is inherent in roba tasks, while retaining
the aility to reason at a high level abou the airrent
world and gals.

This paper discusses the DT-Graphgdan algorithm. The
next sedion lriefly covers the Graphpan agorithm.
Sedion 3, discuses the method DT-Graphgan uses to
perform graph bulding and seach. Following this a
subset of the miniature golf domain used as an example to



Figure 1: Miniature Golf.
illustrate DT-Graphpdan is described. The final sedions
compare related work to DT-Graphdan and dscuss
passble future work.

Graphplan Background

The Graphpan algorithm written by Blum and Furst,
plans by alternately expanding a planning gaph and
extrading a plan solution [Blum and Furst, 1995. The
planning gaph is a series of layers alternating ketween
propasition nods and adion nods. The initial layer
consists of propasition nodks that represent the initial plan
condtion. For ead adion nod, direded edges lead from
the propasition nods that are the precondtions of the
adion to the a¢ion node, and then from the adion to the
propasition nodsthat are the dfeds of the adion.

During gaph bulding, the graph retains binary mutual
excluson information (a mutex relation). This
information speeds ach by traking the propasitions
that interfere with ead dher and can na exist
simultaneoudly. The mutex relation also servesto preserve
state information, two propasitions which are mutex can
not exist smultaneously. Two adion instances at a level
are mutex if they interfere - one adion dletes a
prewmndtion a effed of ancther, or show competing
needs — the adions have precondtions that are mutually
exclusive & the previous level. Two propasitions at a
level are mutex if all ways of adieving the propasitions
(adionsonthe previous level) are mutex.

Graph expansion helts on a propasition layer when eadh
element of the goal condtion is present and nore ae
pairwise mutex. Graphdan then seaches the planning
graph for the plan solution wsing a badckward chaining
seach. The seach results in a path from the goals to the
initial condtion consisting d only nonmutex adions. If
seach finds no dan, then graph expansion and search
continues in an iterative fashion.

We dhose to write our planner on top of the Graphplan
algorithm due to the dficiency with which it locates a
plan. In generating the new planner, the graph framework
of propcsitions and adions tailored ou cdculation d
probability and uility over states and adions.

Decision-theor etic Graphplan
(DT-Graphplan)

The oncept behind DT-Graphpgan is smilar to
Graphdan. Crede a graph with al of the possble
combinations of adions from an initial condtion urtil
reading agoa condtion and then backward-chain search
the graph for an acceptable plan. The DT-Graphpan
algorithm accommodates dedsion theory, in allowing for
probabili stic propasitions and urcertain adion effeds.
DT-Graphpgan's objedive is the generation d a plan
meding an atemporal threshold utility.

One gproach to incorporating dedsion theory with the
Graphdan agorithm creaes date and adion layers
instead of centering on popcsitions and adions. An
investigation o this representation condwted by
Boutillier uses the Graphpan algorithm to reduce the
solution space for an MDP solver [Bottilli er, et. al.,
1997.

One of the adlvantages of the Graphpan agorithm is
that it relieves the planner of the burden o processng
entire states at every noce ad instead reasons abou
individual propasitions. DT-Graphgan  extends  this
approach with dedsion-theoretic planning, and maintains
the proposition and adion layers from the original
algorithm. In order to olktain pcssble future states for
cdculations, we rely on the generated mutex relation
information.

Traditionally, rewards are determined based ona set of
fedures of a state. Instead of assgning rewards to a state,
singled ou propgastions in the plan graph receve the
reward.

Since DT-Graphpan dees nat explicitly reason abou a
world state, the utility of a state is reconstructed. A state’s
utility depends on the rewards of the propcsitions in the
state multiplied by probabiliti es of the propasitions minus
costs of the adions that brings usto the state.

In addition, DT-Graphpgan pans under the
asumption that all of the propasitions for a state ae
independent. The arrent version o DT-Graphpan dces
not incorporate joint probability distributions. We ae in
the processof incorporating thisinto the dgorithm.

DT-Graphplan Propositions

In Graphpan, eadh propasition’s presence in the graph
signifies its validity at that pont. To accommodate
negative propasiti ons, the domain adds a negative version
of the propasition and dedares it mutex with the paositive
version.

DT-Graphgan represents ead propcsition as a
probability value [0..1] and a utility value. The probability
value represents the probability the propasition is
currently true. One minus this value represents the
probability the propasition is currently false. The utility
value is the sum of the rewards eaned to this paint in the
plan and the costs of previous adions.



Initial World Conditions

DT-Graphpan's initial world definition consists of a set
of probabilistic propacsitions. The propasitions in the
initial set represent the probability of the existence of the
propasitionsin an initial world state. Although no part of
the initial world condtions, the domain aso consists of a
utility threshold, which represents the minimum
acceptable utility for a generated plan. The domain
includes a set of reward statements. The reward
statements gipulate the anournt of utility eaned for the
existence of a propasitionin the graph.

Becaise of the @amption d  proposition
independence, DT-Graphdan does not distinguish
between passble worlds. An example of thisisthe “bomb
in the toilet” domain with two padkages [McDermott,
1987. In this domain, there is a fifty percent chance that
padckage 1 is unsafe and padkage 2 is sfe, and a fifty
percent chance of the oppaite. The cndtion d eadh
padkage depends uponthe other. To exeaute this domain
in DT-Graphpan, the probability that eat of the
padckages is sfe is st at fifty percent. This represents the
overall initial state of the world. However, after dunking
one of the padkages in the toilet, the probahility
independence assumption leads to the inability of DT-
Graphdan to generate the 50% probability that the bomb
is defused

Planning Graph Expansion

DT-Graphpdan generates only one plan graph comprising
al of the possble propositions with their various
probabiliti es and uiliti es. Plan graph expansion accurs as
in Graphpan, adding all of the adions possble given the
propasitions avail able & the aurrent time step.

DT-Graphpgan makes use of the aldition d partially-
fadored expanson to handle @ndtional adion effeds
[Koehler, et al., 1997. This allows for context dependent
adion effeds. Partially-fadored expansion expands the
condtional outcomes as the ation is applied to the graph,
expanding orly the branches valid at the time.

Exeaution d an adion in a state occurs when all of its
precondtions are met. Since DT-Graphgan dces not
maintain strict state information, the insertion d an adion
depends on the presence of the precondtion gropgsitions.
The propasitions of the precondtion must al be non
mutex; it must be possble for them to all exist at the same
time, and therefore in the same state. The exad state
information remains unknovn at the time but is
determinable. The important paint is that al adions are
applied to every possble state.

During gaph expanson, adion effeds lead to
additional, possbly new propcasitions. Eadch adion
inserted into the graph generates new propasitions added
to the graph at the next time step. In addition, a noop
adion caries eat existing ropasition at a given time step
are to the next time step.

At any gven time step, multiple occurrences of a given
propasition may exist, with different probabiliti es and/or

utiliti es. Each of these different propasitions represents
one posshle mndtion o the world after exeauting a
series of adions. All possble probability and uility
propasition combinations exist because the graph
represents all of the possble adion applicaions from the
initial state.

For ead propasition in existence, if an adion upates
the probability or utility, the graph will generate a
dudicae propasition with new probability and uility
values. If a propasition exists with the same probability
and uility, the adion adding the propaosition just
references the eisting popcsition. Each adion that
affeds the propasition at the next time step may also
affed the additional propasitions.

Because of the possble multiple smilar propasitions,
an addtional mutex rule eists to maintain sate
information and speal seaching. The alditional mutex
rule spedfies that eat of the propasitions with the same
name and dfferent probabilities and uiliti es are mutex
with ead ather. This mutex rule behaves smilarly to the
one aded to the Graphgan agorithm to acommodate
negative propasitions. Two propasitions with the same
name shoud na exist concurrently. DT-Graphdan retains
the adion mutex relations of interference of effeds, and
competing reals from the original Graphgan algorithm.
DT-Graphpgan also maintains the propaosition mutex
relation whereby two propasiti ons are mutex if al ways of
reading the propasitions are mutex.
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Figure 2: Example graph expansion.

This algorithm results in a graph with a greaer
branching fador and many more nodes per layer than a
graph for a dasscd symbadlic domain. Figure 2 shows an
example of how propasition fanning cccurs, a ead
successve propasition level there ae more versions of the
propasition A. In the example, there is an adion ‘useless
op which gven the precondtion d propasition A has an
outcome dfed of 0.90 popaosition A. From the figure,
the outcome of ‘uselessop’ at time step O is the
precondtion probability of A (0.80) combined with the
effed probability (0.90) resulting in propcsition A at time
step 1 having a probability of 0.90(0.80) = 0.72. At time
step 1 there ae two passble versions of propasition A,
eat pssssng dfferent probabiliti es and are mutex with
eat aher. The light gray lines are the noop adions and
the acs between the propasitions are mutex condtions.
The figure shows no adion mutexes.



Calculating Utilities

The probabili stic calculation of each action depends on
the probability of each precndition and the action effeds.
The eidence of an action is a conjunction of the
probability of each of its preconditions. Because of the
independence asaumption, this is just the product. Each
action effed has a probahili stic adjustment multi plied with
the evidence generates the outcome probability for the
effed propositi on.

The utility calculation of an action begins with
determining the pre-existing utility value. The pre-existing
utility is the sum of the preaondition utiliti es. If more than
one precondition receved reward for the same @ndition,
then the pre-existing uility only includes the largest of
these rewards.

The pre-existing utility deaeases by the exeaition cost
of the action. The eeadution cost of an action is the
estimated expense of exeauting the action. The utility of
each of the action effedsis st to the pre-existing uility.

Reward assgnment follows the alculation of the pre-
existing uility. As discused earlier, the propositions
instead of spedfic states propagated rewards. Reward
assgnment first verifies that there is a reward condition
with the same proposition name as the new propositi on.
Reward calculation increases the utility of a proposition by
the reward amount scaled by the proposition’s probabilit y.

After calculating the utility and probability values for an
action effed, the proposition is added to the graph. If a
version of the proposition does not exist with the same
probability and utility values, graph expansion inserts a
proposition with the new values. If an identically valued
proposition exists, the graph updates the action effed to
point to this preexisting propositi on.

An adion nd only generates new propasitions but also
updates the dedsiontheoretic values of existing
propasitions. By repeding an adion, the probability of a
propasition may increase. For example, in the “moat and
cestle” domain, eat successve exeaution d the ‘build-
cestle’ adion incresses the dance of the catles
succesdul construction (Majercik and Littman, 1987).
DT-Graphpan condLcts probability propagation for ead
of the exeautable adionsto achieve this affed.

When the dfed of an adionisnat aprecondtion d the
same adion, and an instantiation d this propasition exists
before adion exeaution, the propasition’s probability
propagates. Propagation consists of inserting an additional
adion noc, identicd to the previous. This new adion
nock includes an additional precondtion leading from the
previous instantiation o the dfed propastion.
Additionally, propagation replaces the dfed propasition
with an updited ore. The new effed’s probability is
scded by the probability of the propcsition kefore the
adion exeautes. The example in the Example Domain
sedionill ustrates this processin detail .

After constructing eat gaph layer, there is the
oppatunity for graph expansion to halt. Graph expansion
halts when the number of layers reades a aitoff point.
The oondtions for cutoff occur when the last two layers

are identicd, or the goal condtions exist with a dedsion
value greder than the given threshald.

Once the graph contains propasitions meding the goal
condtions a number of goal sets are generated, ead with
a number of elements equal to the goal condtion. DT-
Graphdan sometimes generates multiple goal sets with a
utility greaer than the threshold at the stoppng depth.
These goal sets ordered largest to smallest are seached
individually. The user can set a desired percentage of
these goal lists to seach before resuming the iterative
deepening phase of the dgorithm.

During iterative deepening, the dgorithm alternates
between adding an additional layer to the graph and
seaching the extended graph for a plan. This continues
until the discovery of a plan o the graph reades the
maximum depth allowed. At the maximum graph depth,
al of the generated gaal lists meding the threshold are
seached. If thereis gill no dan discovered, then panning
stops and the dgorithm natifies the user that no dan
exists.

The search phase of DT-Graphplan differs from
Graphplan only in the action sdedion phase. In
Graphplan, the last action adding a proposition is the first
sdeded. In DT-Graphplan, the algorithm instead seleds
the action with the highest utility.

Example Domain

The example uses a small variation of the miniature golf
domain we are applied to the roba architedure. In this
domain, the initial condition is that the golf ball is on the
tee Thereis one reward of 2.0 for getting the ball in the
cup. The actions are push to green, push-to-hole-in-one,
and put-to-cup. The push-to-green action’'s preandition
is ball-on-teg with the dfeds being to remove ball -on-teg
and add ball-on-green. The push-to-hole-in-one action’s
precmndition is ball-on-tee with the dfeds of removing
ball -on-teg adding ball -on-green, and adding a posshility
for ball-in-cup. The putt-to-cup action’s premndition is
ball -on-green and results in a chanceto get the ball-in-the
cup. Thethreeaction definitionsin full arein Figure 3.
push-to-hole-in-one 0.70 ; op-name op-cost
:p 0.70 > ball-on(teg ; precondtions prob. of ball-on-tee> 0.70
:e+1.00 kell-on(green), ; effedsincr. prob. of ball-on-green by 10
- 0.00 kell-on(ted), ; dea. prob. of ball-on-teeby 0.00
+ 0.30 Hall-in-cup(). incr. prob. of ball-in-cup by Q30

push-to-green 0.65

:p 0.70 > ball-on(teg

:e+ 1.00 kell-on(green),
- 0.00 kell-on(ted.

; Op-name op-cost
; precondtions prob. of ball-on-tee> 0.70
; effedsincr. prob. of ball-on-green by 10
; dea. prob. of ball-on-teeby 0.00
putt-to-cup 040 ; Op-name op-cost
:p 0.70> ball-on(green)  ; precondtions prob. ball-on-green > 0.70
e+ 0.85 kell-in-cup(). ; effedsincr. prob. of ball-in-cup by 085
Figure 3: Miniature Golf Actions.

Figure 4 shows the planning gaph generated for this
small miniature golf domain for a utility threshold of 0.69.
The acs on the first layer show the eisting mutex
constraints. The dark outlined fads and adions represent
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Figure 4: Minature Golf Domain with threshold of 069

the final plan elements. The final plan consists of push-to-
hae-in-one and then put-to-cup. Increasing the utility
threshold beyond Q69 causes the planning gaph to extend
an additional layer and resultsin athree-step plan of push-
to-green, putt-to-cup, and put-to-cup with a utility of
0.90.

To analyze how DT-Graphgdan propagates probabiliti es
and uiliti es, let’slook at the putt-to-cup adionin the final
plan. The precmndtion for putt-to-cup is ball-on-green,
the one used in this adion has a probability of 1.00 and a
utility of —0.70. Since this is the only precondtion for the
adion, the evidence for the adion is 1.00. Note that the
exigting uility of —0.70 is the st of the putt-to-hole-in-
one adionthat generated the ball -on-green propasition.

The putt-to-cup adion has a single dfed, that of
establishing the ball-in-cup propasition with an oucome
probability of 0.85. This leads to the generation d the
propasition kall-in-cup with a probability of 0.85. Since
thereis areward of 2.0 for getting the ball in the aup the
utility is 0.85*2.0 —the aceued adion costs of 1.10. This
resultsin a utility of 0.85*2.00-110= 0.60.

However, 0.60is not the utility of the proposition in the
final plan, it is pointed at by the arrow. The proposition
included in the plan makes use of the eisting probability
of the ball-in-cup from the previous time, 0.30. The gray
dashed line in the figure shows this probability
propagation operation. The probability of the ball-in-cup
proposition is the existing probability 0.30+ the remaining
probability scaled by the action’s chance of success (1.0—

0.30)*0.85, yielding 0.30+0.595 = 0.895 The reward is
calculated based on this probahility resulting in the utility
of 0.895*2.00-1.10= 0.69.

Related Work

One method d incorporating dedsion theory in planning
is to represent an adion based upona transition matrix,
representing pcessble danges between all of the world
states. This is the method wsed in traditional Markov
Dedsion Proceses (MDP). An MDP models a dynamic
system, where the state of the system is represented in
terms of a joint probability distribution ower the state of
the system given the system state & the previous time
dice Additionally, an MDP system may observe anaisy
function d the state variables, and have incomplete or
impredse state information. This condtion generates a
Partiall y-Observable MDP (POMDP). Partial
observability is a similar objedive & in DT-Graphdan;
however, POMDP uses a different languege by
representing probability over the state. DT-Graphpan
reasons with a propcsition representation, representing
probabili stic steps as a condtional probability distribution
over a set of outcomes based uponthe precondtions.
Buridan, one of the first probabilistic planners plans
under condtions of partial observability [Draper, et a.,
1994. C-Buridan extends Buridan to generate contingent
plans. DT-Graphpgan dffers from Buridan by nd



incorporating initial world state probabilities. A world
state is a wlledion d propgsitions in the initial state. In
Buridan, it is possble to have multiple possble initial
states where the chancethat the initial state is one of these
possble worldsisincluded in the domain description.

MAXPLAN, an additional probabilistic planner,
compiles the planning poblem into an E-MAJSAT
problem and solves for a mntingent plan [Mgercik and
Littman, 199§. MAXPLAN converts the planning
problem into a single step plan where variables represent
ead probability. Solving the generated satisfiability
matrix also solves for the unknaovn probabilities. The
developers of MAXPLAN in comparing it to Graphgan
show that although no as fast compares favorably. The
MAXPLAN planner isnat as fast as Graphdan dwe to the
use of mutex rulesin Graphgan prunes a grea ded of the
seach spacethat the satisfiability solution dces nat.

Conformant Graphgdan (CGP) extends Graphpdan, with
the adtion d multiple planning gaphs, one for eath
possble world [Anderson, et al., 1999. CGP builds a
separate graph for ead of the passble worlds and applies
ead adion to all the worlds [Anderson, et al., 1999.
Sensory Graphpan (SGP) extends CGP by adding sensory
adions[Weld, et al., 1998. SGP tries to find a solution
that worksin all of the possble worlds. If a solution daes
not work then it uses the sensory adions to try to
distingush between the worlds. Once the worlds are
distinguishable then eat world gets a separate subgal.
The separate subgals ®rve to seled an alternative murse
of adionfor ead world.

The PGraphdan panner, similarly to C-Buridan,
produces a ntingent probabilistic plan [Blum and
Langford, 1999. Both PGraphpan and DT-Graphpan
originate with the Graphpan algorithm. PGraphpan's
methoddogy dffers from Graphpan in that instead of
performing a badkward-chaining seach, seach is a
forward-chaining process to find an ogimal contingent
plan. PGraphgdan uses the forward-chaining seach phese
to bah propagate probabiliti es and find a plan.

All of these planners use aprobabili stic model similar
to MDP's. Each state has a probability associated with it.
Actions result in new states with a set probability. Each
propasition in the state represents the existence of an
element in the state. DT-Graphdan dffers from these
approadies in that it reasons using popgstions. Each
propasition hes its own probability signifying the
probability it may exist at that paint in time.

If two propasitions are not mutex with ead ather and
seach shows that a series of adions leads to bah then
they may exist in the same future state. Each propasition
has a maximum probability that it exist. The product of
the propasition's probabiliti es represents the maximum
probability they bath exist at the same time. We ae in the
process of completing the aldition d joint probability
distributions to include other methods of cdculating these
state probabiliti es for a set of propasitions.

Empirical Results

In this sdion, we ompare DT-Graphpgan with two
existing pobabilistic planners. The @mparison with
Buridan gves a general measure of the performance of
DT-Graphpan to compare with ather planners. Since DT-
Graphdan and PGraphpgan bah use the Graphdan
algorithm, testing d the two algorithms outlines the
differences in the dternative gproaches. We then
demonstrate how DT-Graphpgan gces beyond bdh
planners cgpabiliti es by planning with utiliti es.

One popuar probability domain is the “moats and
castles’ domain [Mgjercik and Littman, 1999. In this
domain, the objedive is to buld a catle on the bead.
During construction, a wave may come and destroy the
cestle. In order for a wave not to wash the catle avay, it
isbest if the ayent digs a moat first. There ae two adions
in this domain. One adion is ‘dig-moat’ which has a 0.5
probability of acually creding a moat. Additionally, there
is the ‘build-castle’ adion. If a moat exists, the ‘build-
castle’ adion succeals with a probability of 0.67. If no
moat exists, the build adion orly succeeals 0.25 percent of
the time. If the *build-castle’ adion fail s then the moat is
destroyed.

We dter the domain definition to increase the number
of possble solutions. Instead of having a singe moat
depth, there ae four. Each ‘dig-moat’ adion increases the
depth o the moat by ore, from no-moat to moat-depth-of-
four. Once the depth of the moat reades four, the ‘dig-
moat’ adion daes not ater the moat’s depth. As the
moat’ s depth increases the probability of the ‘buil d-castle’
adion succealing increases. The probability distribution
for ‘build-castle’ becomes 0.25 for no-moat, 0.46 for
moat-depth-of-one, 0.60 for moat-depth-of-two, 0.70 for
moat-depth-of-threg and Q75 for moat-depth-of-four.

To run the “moat and castle” domain and aher
probabilistic domains on DT-Graphpan, the domain
description must set al adion coststo 0.00, and noreward
condtions represented. We compared the performance of
the “moat and cestle” domain on PGraphgan, Buridan,
and DT-Graphpan. We varied the number of castles in
the domain from 1 to 5; Table 1 represents the run time
results comparing Buridan and DT-Graphpan. Figures 5
and 6 graph the results of DT-Graphpan and PGraphdan
in the exeautiontime and number of nodes produced.

Tablel: ‘moat and castles’ Results.

1 castleR castles3 castlespbomb and toil et
DT-Graphpan|0.000s0.005s [0.005s [0.000s
Buridan 1.050s[79.712s} il

*: for 3 castles and more and the “bomb and toilet /w cloggng” domain,
Buridan took over 5 minutes to find a solution.

As Table 1 shows, the Buridan planner took ower five
minutes to solve the castle problems with three or more
castles. Buridan also took longer than 5 minutes to solve
the “bomb and the toilet” domain with cloggng and two
padckages. As discused ealier, the “bomb and toil et”
domain representation in DT-Graphgdan daes nat include
world state information, instead representing ead




padkage & having afifty percent probability of containing
a bomb. The cmparison daes sow that DT-Graphgan
quickly finds lutionsto all of these small problems.

Figure 5 and 6 compare the exeaution time and noce
generation d DT-Graphpan with PGraphpan. Figure 5
shows the exeaution times of the two planners. The figure
demonstrates that of the two planners DT-Graphdan
locates a plan in the least amount of time aad daes not
suffer as badly as the domain size increases. For eat
larger domain, the graph generated gows larger;
generating more states to search.

One reason for the speed dfference is the method sed
to seach the generated graph. DT-Graphdan performs
badkward-chaining seach and ignaes a greder
percentage of states than the forward-chaining seach o
PGraphpan.

Figure 5: Exeaution Time Comparison for 1-5 Castles.
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In order to perform badkward-chaining seach, DT-
Graphdan generates sgnificantly more nodes. The
additional nodes srve to propagate probability
information from the initial condtions to the gods, as
explained with the example domain. PGraphdan instead
of generating additional nodes waits until the forward
seach phase to conduct this propagation. Figure 6 shows
the comparison d the number of nodes generated between
DT-Graphpan and PGraphgan.

One reason PGraphpan performs forward-chaining
seach is to generate a ontingent plan. This differs from
DT-Graphpdan, which generates a blind dan.

5000
4000
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Graphplan

5
/
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1000 ?%‘*
0 - T T T

1 2 3 4 5
Castle Count
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Figure 6: Node Generation for each Castle Domain.

Both C-Buridan and PGraphdan produce mntingent
plans while DT-Graphpgan dcaes naot. The probabili stic
planners crede a orntingent plan that for all adion
succesgfail branches has a probability that meds or
excedls a desired threshod for a speafic goal condtion.

Whereas the plan generated by DT-Graphdan is a singe
series of adions that leads to the greaest reward. We
chose to tradeoff at the st of possble cntingent
planning for the dficiency of Graphgan's backward-
chaining seach. Removing contingent planning daes not
interfere with the purpose of DT-Graphpan, which
incorporates uncertainty in the form of probability and
utility. We performed comparative testing with the
probabili stic planners to include a @mparison to existing
planning systems.

One reason for developing DT-Graphdan was to
incorporate utility into the description d the domain. One
of the capahiliti es in this resped that we developed into
DT-Graphpan is the aility to locate aplan that meds a
given threshold for a goal set. This means that the user
can define adomain with a set of rewards and a desired
utility threshold and the planner will find the first plan
meding the threshdd. In these domains, rewards
represent a general set of desirable events, some of which
may nat be mncurrently possble.

We have alarger version d the miniature golf domain
from Figure 3 that has two levels. The gaf course mnsists
of astartinglayer, andthe ending layer that hasthe ap. A
gutter and a chute mnred the starting layer to the ending
layer. The difference between using the dhute versus the
gutter isthe chuteis harder to get the ball into but gets the
ball closer to and passbhly into the aup. The initial domain
consists of the ball on the starting layer and the goal is
‘ball-in-cup’. One reward condtion exists for getting the
ball into the aup. Figure 7 describes most of the adions,
the adionsto pickup and dop the ball, and move between
levels are omitted becaise of their ladk of uncertainty.

push-to-gutter 0.30

:p 0.70> ball-on(11) 0.70> roba-on(11) 0.10 < roba-holds-ball ()

:e+ 1.00 kell-on(12),

- 0.00 kell-on(11),
+ 0.20 Hall-in-cup().

push-to-chute 1.15
:p 0.70> ball-on(I1) 0.70 > robat-on(I1) 0.10 < roba-holds-ball ()
:e+ 1.00 kell-on(12),

- 0.00 kell-on(11),

+ 0.90 Hall-in-cup().

putt-to-cup 030
v 2 level
:p 0.70 > ball-on(?) 0.70 > robat-on(?) 0.90 > cup-on(?) 0.10 <
roba-holds-ball ()
:e+0.90 kall-in-cup(?).
Figure 7: Larger Miniature Golf Domain.

Setting the threshold for this larger miniature golf
domain at 0.65, the resulting ore step plan is to pwsh the
ball to the chute, which results in the ball being in the
cup. By increasing the utility threshod to 0.70, the
resulting dan extends to three steps with an overall utility
of 1.23. This plan pushes the ball to the gutter, getting the
ball to the second layer. The roba then moves to the
seoondlayer and puts the ball into the ap. By increasing
the threshold even more, the plan generated hes a utility
of 1.36 andisthe previous plan with an additional putt-to-



cup adion, thisisthe highest utility plan pessble.

Future Work

The alditions we plan to make to DT-Graphgdan consist
of joint probability distributions and gaph pruning. We
initially postponed the handling of joint probabiliti es
becuse of the increase in complexity they incur. In order
to calculate joint probabilities, each propostion’s
probability calculation depends on al of the other
propositions. One method of handling this is to add
propositions for all possble joined propositions. This
method increases the number of propositions at each level
exponentially. Because there are more nodes, the time
required to build and search the graph will also increase.

A seand method to incorporate joint probabiliti es is to
have the user prededare any of the joins required by the
domain. During graph building, the addtion of joined
propositions occurs only for those dedared in the domain
description. This reduces the number of propositions to
add and search but relies on the user’s insight into the
domain. We are in the process of incorporating this
method into DT-Graphplan. The user deddes how densely
interconneded the propositi ons are by including a network
in the domain description which dictates how the
propositions are interconneded and the manner the
probabiliti es affed each other.

During gaph construction, many nodes added to the
planning gaph day norolein the fina plan. As shown in
the largest ‘moat and castle’ domain, where & the solution
depth there ae 4095 nods. The planner also makes
limited use of the utility information available. This
occurs in the plans for the larger miniature golf domain,
which makes no wse of the pickup/drop adions due to
their high costs. All of the propasitions produced by these
adions only serve to waste space We propcse to add a
system to reduce the number of propasitions generated.
This gstem would expand a set best percentage of
propasitions based ontheir utility, marking the remaining
for later expansion. If seach finds no dan, then the
planner revisits and expands the marked nodes.

Conclusion

We have developed a time dficient dedsion-theoretic
planner. Our planner based on the fast Graphpgan
algorithm finds the first plan meding a user-defined
threshold. The plan damains are seachable based on a
user-defined gaal or utility only. The adions used by the
planner hand e uncertain initial condtions and incorporate
condtional outcome dfeds. Sets of rewards and adion
costs dictate the assesament of utility.

We have @mpared DT-Graphdan to existing
probabili stic planners, showing the difference in the
approaches and generated plans. Our results $ow an
additional expressveness of incorporating uility over
these probabili stic planners. In the interest of increasing

this expressveness we are in the processof extending the
DT-Graphpan agorithm to incorporate joint probability
distributions. This inclusion would remove the strong
asumption d propasition independence

We plan to apply our system in a layered roba control
architedure to ad as baoth the planner and sequencer. The
result will be asystem that can switch tasks with less
programming, and can generate plans as dictated by
resources.
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