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Abstract Behavior-based systems form the basis of
autonomous control for many robots, but there is a need

to ensure these systems respond in a timly manner. Un-

expected latency can adversely affect the quality of an

autonomous system’s operations, which in turn can af-
fect lives and property in the real-world. A robots abil-

ity to detect and handle external events is paramount

to providing safe and dependable operation. This pa-

per presents a concurrent version of a behavior-based

system called the Real-Time Unified Behavior Frame-
work, which establishes a responsive basis of behavior-

based control that does not bind the system developer

to any single behavior hierarchy. The concurrent de-

sign of the framework is based on modern software
engineering principles and only specifies a functional

interface for components, leaving the implementation

details to the developers. In addition, the individual

behaviors are executed by a real-time scheduler, guar-

anteeing the responsiveness of routines that are critical
to the autonomous system’s safe operation. Experimen-

tal results demonstrate the ability of this approach to

provide predictable temporal operation, independent of

fluctuations in high-level computational loads.
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1 Introduction

Autonomous system’s operating in the real-world have

an inherent requirement to be both robust and respon-

sive to sudden and unpredictable changes in the en-

vironment. Typically, reactive behavior-based routines

are tasked with maintaining the safe operation of the
system. And as demonstrated by YARA [8], the ability

of these low-level routines to run at periodic intervals is

crucial to the safety and reliability of the robot’s oper-

ation. The need to make some processes “more impor-
tant” than others is becoming common in applications

where responsiveness is measured in milliseconds. This

paper expands on the concepts of behavior-based sys-

tems [3], transitioning the sequential execution of the

behavior logic in a hierarchy into a multithreaded do-
main that supports the periodic execution of individual

behavior components at independent intervals.

The development of robotic system’s that attempt

to balance their ability to be both deliberative and re-
sponsive in dynamic and changing environments face

a difficult problem because simple processes that exe-

cute at frequent intervals are interleaved with computa-

tionally intensive planning and optimization algorithms
that run for relatively long periods. Such situations in-

troduce unpredictable delays where high-priority con-

trol routines are forced to wait until lower priority plan-

ning elements yield or are preempted by the operat-

ing system. This delay can cause detrimental problems
when an autonomous system and/or the environment

is highly dynamic [2,20], or where processing capabil-

ity is limited, such as in embedded applications [17,9].

Ideally, deliberative processes execute between the pe-
riodic execution of the low-level control routines. An-

other alternative separates low-level and deliberative

tasks between different computers [22], this however be-
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comes difficult as operational platforms become smaller

and smaller. Further, the amount of computational time

available for these high-level processes fluctuates in re-

sponse to the amount of change in the environment.

In chaotic environments a system may operate exclu-
sively under reactive control to maintain a safe operat-

ing envelope. In quieter environments reactive control

is needed less frequently, allowing deliberative calcu-

lations to be performed with the remaining processor
time []. The root of the problem is that the schedulers

used by modern operating systems do not guarantee

that the highest priority process will be the running

process, only that the highest priority process will run

next.

This paper presents the Real-Time Unified Behav-

ior Framework (RT-UBF) which supports the ability

to execute reactive control elements inside a real-time

domain. This approach allows the system’s behaviors
to be scheduled as real-time tasks that can preempt

the execution of high-level processes. The RT-UBF is

implemented on a Pioneer P2-AT8 robot using RTAI

[18] on a standard Linux [26] installation running a

three layer robot control architecture. Results compar-
ing real-time and non-real-time execution latency show

that the real-time control elements are able to maintain

a stable basis of reactive-control with time-critical tasks

responding deterministically regardless of the system’s
computational load. Thus, the execution of individual

behaviors are more reliable, as the real-time scheduler

ensures each runs in an exact periodic manner.

The following section discusses how real-time sched-

uling approaches satisfy the needs of the system. As well
as presents previous real-time behavior-based systems,

from which the design of the RT-UBF builds upon.

2 Background

The responsiveness of a behavior-based controller de-

pends heavily on the deterministic scheduling of the

controller components. Several real-time patches and
extensions exist to meet these time-critical thresholds,

and several robot system exist which employ various

real-time capabilities.

2.1 Concurrent Programming

To maintain the responsiveness of a computer, modern

operating systems use concurrency to give the appear-
ance that multiple tasks are being handled simultane-

ously. Concurrency models parallelism by giving each

thread a time slice in which to perform a task before

being preempted or forced to yield to the next pro-

cess that is ready to run. This approach attempts to

maximize “average” performance [30] and provide the

appearance of multitasking. In some cases the overall

performance can appear poor because the scheduling
algorithm gives no assurance about when a process will

run, or that the highest priority task will always be

active [28].

Since threads operate within a shared memory space,

they are required to synchronize at critical junctions. If
not implemented properly, concurrent programs intro-

duce the potential for new problems that do not exist

in their sequential counterparts, such as deadlock, in-

terference, and starvation [28].

Currently, modern operating systems and program-
ming languages allow threads to be interrupted syn-

chronously. This approach simplifies the control and

synchronization requirements, but is inherently weak

because it does not provide a guarantee that the in-
terrupted thread will yield within a known period of

time.

2.2 Real-Time Systems

Real-time systems are used to control critical systems

where an untimely response to an event in the real-
world is either too late or incorrect and risks the safety

of the public, personnel, or the system itself [28]. A

system is said to be real-time if the correctness of an

operation depends not only upon its logical correct-

ness, but also upon the time at which it is performed.
Such systems provide control facilities that enable a

programmer to specify times at which actions are to

be performed or times at which actions are to be com-

pleted, as well as the ability to respond or dynamically
reschedule tasks when a timing requirement cannot be

met. It is also common to distinguish between hard and

soft real-time systems. Hard real-time systems typically

have a strict schedule in which processes must com-

plete their task, or forfeit the integrity of the system.
This approach is typically implemented as an embed-

ded system and guarantees response times less than the

maximum stated latency. Approaches that can tolerate

some lateness are referred to as soft real-time and are
typically responsive but can not assert their maximum

latency. The violation of timing constraints in soft real-

time systems results in degraded quality, but does not

necessarily lead to a failure state.

The advent of the POSIX-1003.1b real-time exten-
sions [16] led to two efforts to develop Linux into a

general purpose real-time operating system, RTLinux

[30], and RTAI (Real-Time Application Interface) [29].
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RTLinux uses an approach known as preemption

improvement to shorten interrupt servicing latencies

down to levels that support real-time applications [4]. In

the preemption improvement approach, the Linux ker-

nel is modified to reduce the length of non-preemptible
code in order to minimize the latency of interrupt han-

dling routines or real-time task scheduling in the system

[5].

Use of the preemption improvement approach cre-

ates several drawbacks. The first is that any guaran-
tee of maximum latency is effectively unverifiable. Al-

though the kernel is generally more preemptible, such a

guarantee is limited unless every possible code path in

the kernel is examined. Another limitation is that future
maintenance is difficult. The preemption improvement

approach requires substantial modifications throughout

the Linux kernel, which poses the risk of introducing

new bugs and makes it unsupportable by the main

Linux community [6].

Real-Time Application Interface (RTAI), in contrast

to RTLinux, uses an approach known as interrupt ab-

straction to reduce interrupt latency for real-time ap-

plications. Instead of making incremental changes to

the kernel to improve its preemptibility, RTAI uses the
ADEOS hardware abstraction layer to create a real-

time nano-kernel which has higher priority than the

Linux kernel [23]. The Linux kernel runs as RTAI’s idle

process, only running when there are no real-time tasks
to run and the kernel is preempted whenever a real-time

task needs to run [4,30]. Because a separate hardware

handling layer intercepts and manages the actual hard-

ware interrupts, any missed hardware inputs are simu-

lated, making the Linux kernel mostly unaware that it
is being subverted by RTAI [6].

The interrupt abstraction approach leaves the Linux

kernel largely untouched, avoiding many of the software

maintenance problems faced by RT-Linux. Addition-

ally, the RTAI scheduler and hardware abstraction layer
total 64 kilobytes, which no longer makes verification of

the latency guarantees prohibitive [6]. Additionally, the

current version of RTAI provides inter-process commu-

nication methods with priority inheritance and a sym-
metrical API that allows POSIX threads created inside

the Linux user-space to be scheduled as real-time tasks,

allowing an application to operate using a mixture of

real-time and non-real-time tasks [23].

2.3 Real-Time Robot Architectures

The three-layer architecture presents a system that is

both deliberative and reactive [13]. However, mobile

robots exist in the real world where time and events

occur continuously and not in discrete time steps. De-

spite the concurrent execution of each layer, there are

no real-time guarantees that the reactive elements pro-

viding for the safe operation of the robot will execute

as scheduled. The following discusses current robot ar-
chitectures that use real-time approaches to enhance

responsiveness and ensure safety.

OpenR - Developed as an open architecture (or multi-

vendor system) for autonomous robot systems, OpenR
is based on Aperios [31], an object-oriented, distributed

operating system which allows physical and software

components to be defined uniformly as objects. Because

everything is referenced as an object, OpenR advocates

a common interface for various components like sensors
and actuators. Expanding on this approach, the design

is a layered model consisting of: a hardware abstraction

layer (HAL), a system service layer (SSL), and an ap-

plication layer (APL) [11]. This approach is intended
to allow developers to use well defined interfaces and

introduce new programs without affecting adjacent lay-

ers. Its major weakness is that the HAL layer provides

designated services which are not sufficiently modular,

and thus not easily enhanced. Another weakness is that
OpenR uses message passing to communicate, causing

it to potentially suffer long delays that result from mes-

sages setting off a cascade effect resulting in long service

periods prior to a task being achieved. Though lauded
as a real-time system, this approach fails to enforce real-

time constraints on process execution and provides no

guarantee that a higher priority process will be given

access in a timely manner.

Miro - A CORBA-based robot programming frame-
work [10], Miro is intended to allow for the develop-

ment of reliable and safe robotic software on hetero-

geneous computer networks and supports the use of

several programming languages. The decision to use
CORBA supports a common interface wrapper that al-

lows for distributed processing and platform indepen-

dent code reuse. However, the overhead that occurs

while using CORBA wrappers is not conducive to main-

taining the responsiveness required by low-level robot
control elements. Although their robot implementation

was able to accept and schedule tasks from multiple re-

mote workstations it is unclear how the internal robot

control was implemented or how that implementation
affects responsiveness of the low-level control elements.

SmartSoft and OROCOS - The goal of the Smart-

Soft [25] and OROCOS [24] projects is to establish

robot control frameworks that are both modular and

responsive to events in real-time. The central approach
to responsiveness is based on the observer pattern [12]

which allows a collection of interested components to

be immediately notified of an external event. This ap-
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proach achieves good results overall, but it does not

limit the length of the code path triggered by an event,

and subsequently cannot guarantee that the system re-

mains predictably responsive.

YARA - The YARA architecture [8], which stands

for “yet another robot architecture,” is unique in that it
uses dynamic priority assignment of its active threads

to achieve a responsive basis of control in a changing en-

vironment. To improve the dependability of the system

and ensure a fast response, the priority of each thread
is adjusted using an earliest deadline first approach,

this helps to achieve a better coexistence of reactive

and deliberative components. The soft real-time process

scheduler available with Linux versions 2.6 or later gives

the next time slice to the highest priority thread waiting
to run. This approach demonstrates the ability of a gen-

eral purpose operating system to provide inter-process

communication with an average response time of 175

�s under optimal conditions. The ability of the YARA
architecture to remain stable and predictable under an

increasing computational load is demonstrated by im-

plementing two edge following behaviors, one in YARA

and another in SmartSoft [25], and is capable of produc-

ing 786 �s response times between processes. A major
problem exposed by this experiment is that execution

failures went undetected because the SmartSoft archi-

tecture had no internal monitoring mechanism to detect

processes that failed to execute as scheduled [8]. By dy-
namically adjusting the priority of the active processes,

the improved Linux scheduler ran the highest priority

process in the next time slice, but no guarantees can

be made about responsiveness, except that the system

has the ability to preempt the running process [1]. The
YARA paper closes by suggesting that hard real-time

approaches be explored to improve responsiveness and

provide guarantees of fine-grained timing intervals.

This paper expands on the goals of the YARA project

by presenting a responsive behavior-based controller de-

sign that operates as a collection of periodic tasks man-
aged by a hard real-time scheduler.

3 Implementation

This section describes a real-time behavior-based sys-
tem which can make hard time guarantees for real-

world response. First, the high-level component design

of the system is presented, followed by an overview

of the Unified Behavior Framework (UBF). Next, the
Real-Time UBF (RT-UBF) and the modifications made

to the robot control architecture to meet hard real-time

constraints are discussed.

3.1 High-Level Design

A block diagram of the high-level design is presented

in Fig. 1 and shows how RTAI resides directly above
the hardware and that the behavior-based controller

elements are able to bypass the Linux kernel and be

treated as real-time tasks by the RTAI scheduler. The

ability to schedule the robot’s low-level control routines

as periodic real-time tasks is provided by hooks into
the RTAI nano-kernel. The RTAI nano-kernel is also

responsible for scheduling the Linux kernel which han-

dles the scheduling of all non-time-critical tasks (right

hand execution path in Fig. 1).

Fig. 1 Real-time tasks bypass Linux and run on the RTAI sched-
uler.

In this implementation HAMR (Hybrid Architec-

ture for Multiple Robots) [15], a non-real-time three
layer robot control architecture, is modified to allow

the behavior-based controller’s sub-components to be

established as hard real-time tasks which have their ex-

ecution controlled by the RTAI scheduler. By develop-
ing the behavior-based controller in this way, the ability

to provide a responsive basis of reactive control inde-

pendent of fluctuations in the system’s computational

load is accomplished.

The hardware drivers and behaviors subcomponents

of the behavior-based controller shown in Fig. 1 are
a library of available drivers and behaviors, while the

controller is implemented using the RT-UBF.

3.2 Unified Behavior Framework (UBF)

The concept of the UBF is to improve the software de-

velopment of behavior-based systems though the use of

a modular design which attempts to simplify develop-
ment and testing, promote the reuse of code, support

designs that scale easily into large hierarchies while re-

stricting code complexity to base behaviors, and allows
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the behavior developer the freedom to use the behavior

system they are most familiar with.

In the UBF, all incoming sensor information is stored

in the State. The central State object is a representation
of the current environment and includes decoupled sen-

sor data, positional information, goals, and the current

operational parameters. The State class is implemented

using a singleton design pattern to ensure one, and only

one instance is created. During execution, a reference
to the State is passed into the genAction method of the

abstract Behavior class which encapsulates all of the

behavioral logic and returns an Action object which

consists of hardware commands to be applied to the
robot (Fig. 2).

Fig. 2 Strong encapsulation of reactive behaviors allows the con-
troller to change its active behavior during execution.

The UBF uses the strategy pattern [12] to establish

an abstract Behavior interface. The strategy pattern

provides the Controller with the proper interfaces to

State and Action, and hides the implementation details
of each behavior while allowing the controller to use all

of the available behaviors in a uniform manner, mak-

ing them fully interchangeable. Such an approach frees

the low-level controller from being bound to any sin-
gle behavior architecture. In fact it provides the ability

to seamlessly switch between distinct architectures and

hierarchies during execution. The class diagram for the

UBF is shown in Fig. 3.

In building behavior-based systems with multiple

behaviors, the results of the behaviors are fused under

a Composite behavior, modeled on the composite pat-

tern [12], the Composite extends the abstract Behavior

class with the addition of an Arbiter. Through arbitra-
tion, the UBF supports reuse by allowing behaviors to

be joined in many locations. The Composite and Ar-

biter provide the UBF the ability to form hierarchical

structures of behavior collections. Thus, a developer is
free to reuse the functionality of an existing behavior

and incorporate it as part of a new structure. This is

of interest because the implementation of substructures

Fig. 3 Class diagram for the Unified Behavior Framework.

used to create a new behavior is not important. This

provides a means for hierarchies of disparate architec-

tures to be used in the formation of a new coherent

behavior. The Leaf behaviors then perform all of the
reactive behavior work.

Following this structure, it is easy to create a variety

of behavior heirarchies which execute sequentially to
form a desired robot action. A simple behavior hierar-

chy, shown in Fig. 4, establishes a control structure that

includes a goal-seeking behavior and a reactive behavior

joined by a highest activation arbiter. The GoalSeeking
behavior commands the robot to a goal specified in the

shared State. The Reactive behavior provides a means

of responding to unexpected changes in the environ-

ment. The HighestActivation arbiter allows the goal-

seeking behavior to yield to the reactive behavior for a
period of time in order to respond to the environment.

After the period of time expires, the goal-seeking be-

havior out votes the reactive behavior to make another

attempt at the goal.

Fig. 4 Behavior structure formed from a goal-seeking element
and a reactive element joined by a highest activation arbiter.

At its highest level, a goal directed action recom-

mendation is available via the genAction method. When
an action recommendation is requested, the composite

node sequentially builds a set of action recommenda-

tions by calling genAction on each of its sub-behaviors.
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The set of actions is then evaluated by the arbiter to

form a single action that is subsequently returned as

the current recommendation.

This sequential action generation approach is mod-

ified into a multithreaded one which leverages the ad-

vantages provided by deterministic real-time execution.

3.3 Real-Time UBF (RT-UBF)

As demonstrated by YARA [26], the ability of low-level

control behaviors to reliably run at periodic intervals

is crucial to the safety and reliability of robot’s operat-
ing in continuous domains that are both dynamic and

unpredictable.

This section presents the RT-UBF, an asynchronous

implementation of the UBF intended to be employed

within robot architectures that leverage concurrent and

real-time scheduling. The fundamental change over a se-
quential approach is that the computational logic of the

Leaf behaviors is moved out of the genAction method

and into separate threads of execution that run periodi-

cally via a real-time scheduler. With each Leaf behavior

scheduled to evaluate the environment at appropriate
periodic intervals, the current action recommendation

can be obtained repeatedly via the genAction method.

This approach treats the set of base behaviors as a pool

of independent worker threads that execute as concur-
rent and potentially simultaneous processes.

This change does not affect how a controller requests

an action recommendation from its active behavior. In

fact, this implementation makes the call to genAction

quite fast because it need only traverse the behavior hi-

erarchy to collect and arbitrate the current action rec-
ommendations down to a single recommendation. Addi-

tionally, this approach divorces the rate at which a con-

troller requests action recommendations from the rate

at which each Leaf behavior evaluates the environment.

Using this implementation approach, the structure

of a Leaf behavior has two major parts: the genAction
method and the run method. The genAction method is

a requirement of the abstract behavior class and pro-

vides asynchronous access to the behavior’s current ac-

tion recommendation. The run method, called periodi-
cally by a scheduling process, evaluates the current en-

vironment and updates the current action recommen-

dation.

An asynchronous implementation naturally raises

the question, “How frequently should a controller poll

its active behavior?” Unfortunately, there is no best
answer, but all solutions must consider the level of un-

certainty in the current environment. One approach is

to request an action recommendation at twice the rate

of the fastest periodic evaluation of the environment.

This solution is based on the principle of the Nyquist

sampling rate [21] and assumes that the periodic sched-

ules of the base behaviors are adjusted at runtime to

match the environment’s current level of change. In
rapidly changing environments, this approach allows

low-level processes to execute at shorter periodic inter-

vals, increasing the computational time used by reac-

tive control routines. In more stable environments, the
scheduler can set low-level processes to execute less fre-

quently, making computational time available to higher-

level planning processes.

By converting the UBF into disparate asynchronous

behaviors, the ability to sample the environment and

recommend actions in a deterministic periodic manner

creates a highly reactive basis of control for behavior-

based architectures.

3.3.1 RT-UBF Addition Into HAMR

The HAMR robot control architecture [15] (Fig. 5) in-

terfaces to the physical robot hardware via the Player

robot control suite [14]. To make HAMR’s behavior-

based controller operate in real-time, the hardware driv-
ers required by the controller (Sensors and Robot Com-

mand) are divorced from the existing Player [14] imple-

mentation and modified into priority-based hard real-

time tasks. This allows them to preempt the Linux ker-
nel when they enter the run state and register with the

RTAI hardware abstraction layer to interface with the

hardware components in real-time. Second, the hard-

ware manager, a subsystem of HAMR’s Sequencer is

modified to interface to the modified RTAI schedula-
ble hardware drivers. Third, the Leaf behavior classes

in the UBF are modified for real-time execution, this

converts all behaviors into real-time tasks. Fourth, the

Controller, which is responsible for arbitrating the be-
havior hierarchy to generate a final action is written for

real-time periodic execution.

Fig. 5 The deliberative subsystem of HAMR will be preempted
by the low-level controller and sensor subsystem.
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These changes allow the RT-UBF to operate it’s

control loop within the HAMR architecture. The be-

havior-based low-level control loop consists of the three-

step process presented in Fig. 6. First, the State is up-

dated by the Robot Driver to represent the current con-
ditions of the environment. Second, the Controller pulls

the final action from the Active Behavior. Finally, the

Controller gives the proposed Action the authority to

issue motor commands to the Robot Driver, closing the
sense/act low-level control loop.

Fig. 6 The RT-UBF low-level control loop is established as a
three step process (1) update the state; (2) generate an action
recommendation; (3) authorize the action to enact motor com-
mands on the robot.

Under this RT-UBF controller design, the set of
behaviors assumes that the State is representative of

the current environment. This assumption places the

responsibility of keeping the system in sync with the

real-world on the Robot Driver, because it updates the

State with the current sensor data. The ability to es-
tablish a driver as a real-time task allows its routines

to execute at predictable intervals driven by the sen-

sors update rate, which in turn ensures that the central

State object is updated at regular intervals. Each piece
of hardware (i.e. robot, laser, and camera) operates as a

separate real-time task, and each updates its associated

State data members individually.

The next responsibility of the behavior-based con-

troller is for each behavior to generate an action rec-
ommendation based on the current conditions of the

environment. Each behavior does so by using the sen-

sor data contained in the State, and assumes that it

contains an accurate representation of the current en-
vironment. The interval at which each individual be-

havior generates an action depends on how time-critical

the behavior is perceived to be, and on how long the

behavior algorithm takes to execute.

The Controller, like the behaviors and the sensor
drivers, is established as a real-time task, allowing a fi-

nal action to be generated at predictable intervals. The

Controller keeps an active behavior without knowing

about its implementation. Rather than executing this
three-step process sequentially, the State and the be-

haviors are updated asynchronously. Thus, the Con-

troller enacts a two-step periodic process that first re-

quests an action recommendation from the Active Be-

havior, which is typically a hierarchy of behaviors, and

then authorizes the final action to enact the recom-

mended motor commands on the robot.

The State and Action classes are introduced as gen-
eric interfaces to the Robot Driver. Explicitly missing

from the State are methods that access the Robot Driver ’s

motor command interface. This capability is embedded

in the execute method of the Action class, and requires
a reference to the Robot Driver. This requirement en-

sures the coordinated operation of the robot by allowing

the Controller to enact the final action recommendation

returned by the Active Behavior on the robot. The bi-

furcation of the Robot Driver into two interfaces allows
the RT-UBF to make information about the robot’s

current state widely available and protect against be-

haviors hat may act unilaterally on the robot.

The ability to regularly update and evaluate the en-
vironment allows the robot to operate in a safe and de-

pendable manner by remaining responsive to changes

in the environment.

4 Experiment

The latency experienced by time-critical tasks, as sched-

uled by, the native Linux kernel, and the RTAI real-

time nano-kernel, both in user-space, and while operat-

ing a Pioneer P2-AT8 robot are compared. The robot, a
four-wheeled robotic platform equipped with 16 sonars,

odometry, a SICK LMS200 laser scanner, and a firewire

camera. The robots task during this test was to be led

around a hallway by following an orange cone, while
avoiding stationary and moving obstacles.

There are seven periodic real-time tasks, given in

Table 1. The rt-ubf controller is setup to arbitrate be-

tween two behaviors. The first, the follow behavior, fol-

lows an orange cone by using blob data provided by
feeding camera images through a blob detection algo-

rithm. The second, the obs avoid behavior, uses laser

scan data to steer the robot around detected obstacles.

Inputs to the State are provided by the robot, laser,
and camera hardware drivers. The blobfinder pulls the

latest image the camera driver wrote to the State, pro-

cesses it using it’s blob detection algorithm, and writes

the blob results to the State.

Since each task is scheduled periodically, harmon-
ics exist that require some tasks to run at exactly the

same time. To reduce unnecessary latency due to sch-

eduling collisions, the initial execution of each thread is

staggered in time by some offset which interleaves their
execution.

The hardware drivers provide a central service by

ensuring that the perceived State correctly represents
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Table 1 Periodic Real-Time Task Scheduling Configuration

Task Period Duration Offset Priority

robot 25 ms 50 �s 0 ms 1
laser 25 ms 50 �s 1 ms 1
camera 100 ms 1 ms 2 ms 1
blobfinder 100 ms 3 ms 4 ms 1
follow 250 ms 10 �s 8 ms 2
obs avoid 100 ms 50 �s 9 ms 2
rt-ubf 50 ms 10 �s 10 ms 3
Linux Idle 9999

the current environment. If the State falls out of sync

with the real-world, the remaining controller compo-

nents become ineffective, consequently the hardware

drivers hold the highest priority. The elemental behav-
iors are given the next highest priority because their

evaluations of the State form the basis for what actions

the controller’s active behavior will recommend at any

given time. The controller holds the third highest pri-

ority to ensure the final arbitrated action gets executed
by the robot driver.

The Linux user-space computational load for this

experiment is provided by the deliberative part of HAMR
as well as a SLAM algorithm. The deliberative part of

HAMR is composed of numerous threads that make up

the deliberator, sequencer, and coordinator subcompo-

nents [15]. The SLAM processing uses a FastSLAM [19]

algorithm running 1000 particles, which provides a sub-
stantial processing burden to the robot’s Intel Pentium

M 1.6 GHz CPU.

The seven routines that form the behavior-based

controller are instrumented to capture the current time,
and calculate the latency experienced per execution pe-

riod. Latency is measured as the time between when a

periodic task is scheduled to execute, and when it ac-

tually begins executing. For example, if a task is sched-
uled to execute every 20 ms and the difference between

the previous start time and the current start time is 22

ms, the reported latency is 2 ms. Process jitter is deter-

mined by evaluating the difference in latency measure-

ments over time.

The real-time tasks are set to run in periodic mode,

as opposed to one-shot mode. In periodic mode, the

8254 timer is used to create a real-time clock period

which generates interrupts to signal the RTAI scheduler
to run the next available task. This limits what periods

the various tasks can be set to since each period must

be a multiple of the real-time clock period. However,

it provides consistent and reliable thread scheduling,
where one-shot mode uses the microprocessor’s clock

to schedule tasks at any period, but with much less

reliability.

5 Results

The results of this experiment demonstrate that regard-

less of the computational load, a responsive basis of con-

trol is attained by implementing time-critical routines

as real-time tasks. The latency measurements achieved

by this experiment far exceeds the 100 �s hard real-
time guarantee provided by the RTAI documentation.

The empirical results of this experiment indicate that

the periodic scheduler executes tasks exactly on time,

±1 count of the 8254 timer, as long as a few consid-
erations are followed. First, each thread period must

be set at a multiple of the 8254 base period, i.e. if a

20 ms period is desired, but the 8254 base period is

438 �s then the closest available period is 19.80 ms or

20.28 ms. Second, if multiple periodic threads are to be
executed, careful planning of how frequently each runs,

how much processing time each requires, and when each

task is started will help to avoid scheduling collisions. If

scheduling is not planned carefully, a significant amount
of latency could be introduced into the real-time tasks,

which in turn could affect responsiveness.

Fig. 7 compares the latency over a 10 second period

of time for non-real-time Linux user-space threads, and
real-time RTAI scheduled laser driver, obs avoid be-

havior, rt-ubf controller, and robot driver tasks. The

four trends show the processes required to detect and

respond to an obstacle. First, the laser driver must load

the latest scan data into the State. Second, the obs -
avoid behavior must use the laser scan to generate an

action recommendation that out votes the follow be-

havior. Third, the rt-ubf controller must arbitrate the

behaviors and generate a final action. Fourth, the robot
driver must respond to the action by issuing motor com-

mands.

The latency measurements taken for each task in-

dicate that time-critical routines can be scheduled to
execute at predictable intervals by removing them from

the context of the Linux environment and running them

as real-time tasks. However, the robot used for this ex-

periment was only capable of low dynamics, therefore

the measured latency was never found to be detrimen-
tal to operation. But, the ability to guarantee reactive

control through the use of the deterministic scheduling

provided by the RT-UBF is especially important for au-

tonomous system’s where throwing more CPUs at the
problem is not feasible. Such as in embedded system’s,

where power and size are limited, which are becoming

prevalent in micro unmanned vehicles.
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Fig. 7 Observed latency for (a) the laser driver; (b) the obs avoid behavior; (c) the rt-ubf controller; and (d) the robot driver.

6 Conclusions

Mobile robot architectures are a mixture of intercon-
nected processes working to achieve specific results. As

the dynamics of the application platform increases, or

as the complexity of the operational environment in-

creases, the responsiveness of behavior-based system’s
need to keep up. Also, as autonomous system’s have

evolved into the micro domain, where processing ability

is limited, there is a need to ensure the responsiveness

of behavior-based systems.

This paper presents the Real-Time Unified Behavior

Framework (RT-UBF) behavior-based controller, and

compares the responsiveness of a non-real-time versus
a real-time version using a hardware-based experiment.

This experiment demonstrates that the ability to estab-

lish low-level control routines as real-time tasks is an

effective approach to ensuring that a mobile robot can

remain responsive to sudden and unpredictable changes
in the environment. RTAI provides the services to make

some processes “more important” by moving time-crit-

ical routines out of the Linux environment and into

an environment managed by a real-time scheduler. The
real-time UBF is built on top of these services to ensure

that the robot’s reactive controller remains responsive

to changes in the environment.

The next logical question is, “How many real-time

tasks can be supported by this approach?” Like YARA
[26], this experiment focuses on allowing low-level con-

trol routines to remain predictably responsive to changes

in the environment while sharing a single processing

resource with computationally intensive routines. Al-

though isolated from the effects of unpredictable fluc-
tuations in a system’s computational load, the ability

of a system to remain predictably responsive requires

that the real-time domain behaviors identified as time-

critical be managed as real-time components and do not
jeopardize the system’s operational requirements.
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