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As society becomes more dependent upon computer systems to perform increasingly critical
tasks, ensuring those systems do not fail also becomes more important. Many organizations
depend heavily on desktop computers for day to day operations. Unfortunately, the software
that runs on these computers is still written by humans and as such, is still subject to human
error and consequent failure. A natural solution is to use statistical machine learning to pre-
dict failure. However, since failure is still a relatively rare event, obtaining labelled training
data to train these models is not trivial. This work presents new simulated fault inducing
loads with an automated framework to predict failure in the Microsoft enterprise authenti-
cation service and Apache web server in an effort to increase up-time and improve mission
effectiveness. These new fault loads were successful in creating realistic failure conditions that
are accurately identified by statistical learning models.
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1. Introduction

Computer systems are all around us. Some of these systems play insignificant roles in our
lives while others are responsible for sustaining our lives. Unfortunately, the software that
controls these systems is written by humans and consequently subject to human error. As
a result, these systems are prone to failure with potentially catastrophic consequences.

Being able to predict pending failure in those systems can offer tremendous, and poten-
tially life-saving benefits. While being able to accurately predict failure has unfortunately
not been proven possible, there has been work over the past several decades attempting
to make predictions about the failure of machines through the use of machine learning
algorithms (Salfner, Lenk, and Malek 2010). Unfortunately, much of this work has gone
unused (Irrera, Vieira, and Duraes 2015).

In this case, failure is defined as the result of a software fault or error (Salfner, Lenk,
and Malek 2010). There are a number of ways to reduce the number of errors produced
by a piece of software, but the software development life-cycle is shrinking and less time
and effort are being devoted to reducing errors before deployment (Schmidt 2016). This
leaves real-time error prevention or handling. In recent years, the trending solution to this
problem is configuring massively redundant systems that can withstand failure (Bauer
and Adams 2012). While effective, redundant systems incur a high cost and enterprise
design may limit their implementation. Consequently, this research focuses on an area of
reliable computing called Online Failure Prediction (OFP). OFP is the act of attempting
to predict when failures are likely so that they can be avoided (Salfner, Lenk, and Malek
2010).

Training a prediction model requires training data, which is limited due to the rarity
of failure events and the complex and manual training process. To address this prob-
lem, Irrera, Vieira, and Duraes (2015) presented the Adaptive Failure Prediction (AFP)
framework that automates the process of dynamically generating failure data and using
it to train a predictor after an underlying system change. Unfortunately, the types of
failures simulated within the framework were not completely representative of failures
which might actually occur (Kikuchi et al. 2014).

This research presents an AFP framework with a more representative fault load in-
cluding focused software fault injection, third party memory leaks, third party Central
Processing Unit (CPU) over-utilization, and heap-space corruption. The implementation
is then validated on a Microsoft (MS) Windows Server Domain Controller (DC), and on
an Apache web server. Results showed that targeted fault inducing loads could create
realistic failure conditions on Windows Server 2008 and software fault injection alone did
not. Furthermore, these failures were identifiable by Support Vector Machine (SVM) and
boosted decision tree statistical learning models with an average area under the Receiver
Operating Characteristic (ROC) curve of 0.98.

2. Overview of Online Failure Prediction (OFP)

OFP is the act of evaluating a running system in real time to make a prediction about
whether a failure in a future state is imminent (Salfner, Lenk, and Malek 2010). Tradi-
tionally, failure is predicted using statistical information about past failures offline before
a system is fielded. Unfortunately, the complexity of modern computer systems and the
infinite number of ways in which they can be configured, limits the usefulness of offline
analysis.

Salfner, Lenk, and Malek (2010) published a survey paper that provides a compre-
hensive summary of the state of the art on the topic of OFP. In addition to the review
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Figure 1. The timeline for OFP (Salfner, Lenk, and Malek 2010).

of the literature up to the point of publication, they provide a summary of definitions
and measures of performance commonly used in the community for couching the OFP
discussion. The remainder of this section reviews those definitions to build a foundation
for the rest of this work.

2.1. Proactive Fault Management (PFM)

Salfner, Lenk, and Malek (2010) define Proactive Fault Management (PFM) as the pro-
cess by which faults are handled in a proactive way, analogous with fault tolerance and
consisting of four steps: OFP, diagnosis, action scheduling, and action execution. The
final three stages of PFM define how much lead time is required to avoid a failure when
predicted during OFP. Lead time is defined as the time between when failure is predicted
and when that failure will occur. Lead time is one of the most critical elements of a failure
prediction approach.

Figure 1 demonstrates the timeline associated with OFP. The parameters used by the
community to define a predictor are as follows:

• Present Time: t
• Data Window: ∆td, represents the time window of data used for a predictor to

make its assessment.
• Lead Time: ∆tl, represents the time between when failure is predicted and when

that failure will occur.
• Minimal Warning Time: ∆tw, is the amount of time required to avoid a failure if

one is predicted.
• Prediction Period: ∆tp, is the time for which a prediction is valid. As ∆tp →∞, the

accuracy of the predictor approaches 100% because every system will eventually
fail. As this happens, the usefulness of a predictor is diminished.

2.2. Faults, Errors, Symptoms, and Failures

This research uses the definitions defined by Avižienis et al. (2004) as interpreted and ex-
tended by Salfner, Lenk, and Malek (2010) for the following terms: failure; error (detected
versus undetected); fault; and symptom.

Failure is an event that occurs when the delivered service deviates from correct service.
In other words, things can go wrong internally; as long as the output of a system is what
is expected, failure has not occurred. An error is the part of the total state of the system
that may lead to its subsequent service failure. Errors are characterized as the point when
things go wrong. Fault tolerant systems can handle errors without necessarily evolving
into failure. There are two kinds of errors. First, a detected error is an error that is
reported to a logging service. Second, undetected errors are errors that have not been
identified by an error detector. Undetected errors are things like memory leaks. Finally,
a fault is the hypothesized root cause of an error. Faults can remain dormant for some
time before manifesting themselves and causing an incorrect system state. In the memory
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leak example, the missing free statement in the source code would be the fault.

2.3. Adaptive Failure Prediction (AFP) Framework

Since systems are frequently updated and failures are rare events, real failure data is
often not available. Moreover, the literature shows that even if there is a certain type
of failure in training data and a predictor can detect and predict that type of error
accurately, it will still miss failures not present in the training data. The AFP framework
by Irrera, Vieira, and Duraes (2015) presents an approach to maintain the efficacy of
failure predictors given underlying system changes by repeatedly injecting faults.

The framework generates failure data by injecting software faults using a tool based
on General Software Fault Injection Technique (G-SWFIT) (Duraes and Madeira 2006)
in a virtual environment for comparing and automatically re-training predictors. After
implementing the AFP framework using a web server and an SVM predictor, they re-
port that their findings demonstrate the framework is able to adapt to changes to an
underlying system that would normally render a predictor unusable.

In general, the use of simulated data is not well received by the community. However,
Irrera et al. (2010); Irrera and Vieira (2014) report evidence supporting the claim that
simulated failure data is representative of real failure data. By injecting faults, there is
an increased likelihood potential failure types are represented in the training data.

Irrera, Vieira, and Duraes (2015) reported good results and concluded that the AFP
framework is an effective tool. Unfortunately, the fault load used does not completely
represent all possible failures (Kikuchi et al. 2014).

3. Extended Adaptive Failure Prediction (AFP)

The extended AFP framework is an automated framework for generating realistic fail-
ure data for the purpose of training statistical failure prediction models. To do this
requires representative fault loads, a workload generator, and a modern fault injection
tool. Figure 2 shows the original AFP architecture with the modules updated in this
work highlighted.

This section outlines the implementation and extensions to the original AFP frame-
work (Irrera, Vieira, and Duraes 2015). The AFP framework was originally tested on a
single system running Windows XP, which has been deprecated. Consequently, the ex-
tended AFP framework presented has been updated to run on the Windows Server 2008
operating system and tested against the DC services and an Apache web server.

3.1. The Base Adaptive Failure Prediction (AFP)

This research builds on the experiment by Irrera, Vieira, and Duraes (2015) with the
following modifications. Since the focus of this research is on reported errors, log messages
were used to train the predictor as is done in many other recent approaches (Domeniconi
et al. 2002; Fulp, Fink, and Haack 2008; Salfner and Malek 2007; Watanabe 2014). Instead
of only using fault injection to induce failure, this research explored three additional
fault loads: 1) third party memory leaks, 2) third party CPU over-utilization, and 3)
heap-space corruption. In addition to using the SVM model, boosted decision trees were
evaluated. Finally, in addition to the Apache web-server, the primary target was the MS
Windows Server running Active Directory (AD) Domain Services.
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Figure 2. The AFP framework implementation (Irrera, Vieira, and Duraes 2015).

Table 1. Hypervisor 1 configuration (sandbox/target).
Qty. Role Operating System CPU / Mem.

1 DC Win. Server 2008 R2 2 / 2 GB
1 Web Win. Server 2008 R2 2 / 2 GB
5 Client Win. 7 1 / 512 MB

Table 2. Hypervisor 2 configuration (controller).
Qty. Role Operating System CPU / Mem.

1 RDP Win. Server 2008 R2 1 / 4 GB
1 Log Ubuntu 14.04 LTS 1 / 1 GB

3.1.1. Adaptive Failure Prediction (AFP) Modules

This research uses the module arrangement in the AFP (Irrera, Vieira, and Duraes
2015) framework as an abstract system design. The following sections detail the virtual
environment in which this architecture was constructed.

For reference, this virtual environment was hosted on two VMWare ESXi 5.5 hyper-
visors each with two 2.6 Gigahertz (GHz) AMD Opteron 4180 (6 cores each) CPUs and
64 Gigabyte (GB) memory. The specifications of the individual Virtual Machine (VM)s
are shown in Tables 1, and 2.

3.1.2. Controller Hypervisor

The controller responsibilities in this experiment were split between two systems on a
single hypervisor shown in Table 2. One system was the MS Windows Server responsible
for workload management and fault load management. The other system was an Ubuntu
14.04 server that performed the failure prediction management and event management.
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Each of these functions is detailed in the following sections.

3.1.2.1. Failure Prediction. The failure prediction module predicts failure using ma-
chine learning algorithms trained using the labelled training data generated by the rest
of this framework. This module is either training a new predictor because a software
update occurred, or predicting failure based on log messages and possibly other fea-
tures produced by the production system. In this experiment, the statistical models were
trained using the statistical learning software suite R.

3.1.2.2. Fault Injection Management. This module is responsible for remotely manag-
ing the fault load used to create realistic failure data. It was implemented using Power-
Shell remote execution on the Windows Server VM to minimize interaction and potential
biases in the training data. Details of the fault injection method are outlined in 3.1.3.1

3.1.2.3. Workload Management. The workload management module controls the gener-
ation of computational load by directing the sandbox workload module to create realistic
work for the virtually cloned target to accomplish. The purpose of this module is to ac-
celerate the evolution of a fault into a failure. Consider a missing free statement and
the consequent memory leak. A production target server may have a large amount of
available memory and the leak could be relatively small. To accelerate the possibility of
failure occurring, realistic work load must be generated against the sandbox clone of the
production target.

In this experiment, the management and actual load generator roles have been divided
and a new tool has been developed: Distributed PowerShell Load Generator (D-PLG)
(Jordan et al. 2016). The D-PLG provides a realistic and sufficient workload for imple-
menting the AFP framework for a MS DC and web server. The client portion of D-PLG
was used installed on five client machines and used as the sandbox workload generator
as discussed in Section 3.1.3.3.

3.1.2.4. Events Manager. This module is responsible for receiving and managing log
messages and other events that may be used to train the failure prediction algorithm.
Irrera, Vieira, and Duraes (2015) use the MS Logman tool from the remote controller
for event management in their original case study. Logman was configured to poll 170
system variables on the target machine once per second.

Since the focus of this research is on reported errors, and the experimental environment
in this work was modelled after modern enterprise environments where this sort of polling
could produce too much data, this experiment implemented an rsyslog server daemon and
the target was configured to forward logs to it. Moreover, because syslog is a standard
protocol, it is already in use in many enterprise networks today. The messages forwarded
to the events manager were then processed and added to a Structured Query Language
(SQL) database for training and prediction.

3.1.2.5. Sandbox Management. The purpose of the sandbox management module is to
supervise the virtual cloning of the production system that is made when a new predictor
is to be trained. As Irrera et al. (2013); Irrera, Vieira, and Duraes (2015) point out, it
is typically inappropriate to inject faults and cause failures in production systems, so a
virtual clone must be created for that purpose. Furthermore, the virtualization of the
target process has little affect on generated data (Irrera et al. 2013).

For this experiment, the sandbox was managed manually using VM snapshots. After
an initial stable state was configured, snapshots of every component of the architecture
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were taken so that they could be reset after iterations of the experiment. It is important
to note here that because VMWare has documented Application Programming Interface
(API)s, in future work, this function could be automated.

3.1.3. Sandbox Hypervisor

The sandbox hypervisor hosts the virtual clone of the production environment where
faults are injected and from which failure data is collected. Cloning the production envi-
ronment ensures that the production system is not affected and services are maintained
during the training phase. For the purposes of this experiment, the sandbox was con-
structed on a single hypervisor implemented as shown in Table 1. The following sections
outline each module within this module.

3.1.3.1. Fault Injection. This module is responsible for causing the target application
to fail so that labelled failure data can be generated in a short period of time. Irrera,
Vieira, and Duraes (2015) use a single tool implementing the G-SWFIT for this module
and pointed out that this module is the most critical piece of the AFP implementation.
G-SWFIT was developed by Duraes and Madeira (2006) to emulate software failures for
the purposes of software testing. The method is widely implemented for use in software
fault injection both commercially and academically (Cotroneo et al. 2012; Irrera and
Vieira 2014; Natella et al. 2010; Umadevi and Rajakumari 2015).

Unfortunately, previous G-SWFIT tools were incapable of injecting faults into elevated
x86-64 Windows processes. Older tools were written for Java or x86 architectures (Duraes
and Madeira 2006; Martins, Rubira, and Leme 2002; Natella et al. 2010; Sanches, Basso,
and Moraes 2011). For this reason, this work introduces a modernized fault injection tool
capable of injecting into x86-64 elevated system process (such as the ‘lsass.exe’ process).
This tool is called the Windows Software Fault Injection Tool (W-SWFIT)1

Since many of the critical functions performed by the AD services processes are per-
formed in the ‘ntdsa.dll’2 library loaded by the ‘lsass.exe’ process, it was the focus of
fault injection.

Because of the concerns with fault injection (Cotroneo et al. 2012; Kikuchi et al.
2014; Natella et al. 2010), this research generated failure data using fault injection in
conjunction with three new fault inducing loads, covered in Section 3.2.

3.1.3.2. Monitoring. The purpose of this module is to capture indicators of pending
failure at the target host level so that it may be used to train a statistical prediction
model. In this experiment, syslog was used and while it is a recognized standard, syslog
messages are not produced natively in Windows. Fortunately, several forwarding agents
are available to translate and forward native Windows log messages to a syslog server.
For this experiment, the Solar Winds syslog forwarding tool3 was used because of its
popularity in the security community and existing presence on many enterprise networks.
The tool is a lightweight application that simply forwards Windows events to a syslog
server.

3.1.3.3. Sandbox Workload. This module creates realistic work for the target applica-
tion to do before faults are injected. In this experiment, D-PLG was used as the work
load generator for both the DC and web requests. This module was implemented using

1https://github.com/paullj1/w-swfit/
2https://technet.microsoft.com/en-us/library/cc780455(v=ws.10).aspx
3http://www.solarwinds.com/free-tools/event-log-forwarder-for-windows/
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the client portion of D-PLG installed on five workstations and managed by the central
workload manager as discussed in Section 3.1.2.3.

3.1.4. Target Hypervisor

The target hypervisor was constructed as a clone of the sandbox hypervisor shown in
Table 1.

The target monitoring module was implemented exactly as the sandbox monitoring
module was, using the Solar Winds syslog forwarding tool. The only modification worth
noting here is that to ensure the messages were uniquely identifiable by the controller,
the hostname of the target machine was changed after cloning.

3.2. Fault Load Generators

This section outlines the extensions to the AFP framework explored. Given that fault
injection isn’t always considered representative (Kikuchi et al. 2014), the next three sub-
sections outline three additional fault inducing loads explored. Finally, an outline of the
changes in how data was collected from the target is presented.

3.2.1. Under-Resourced CPU

A CPU may become under-resourced in a few ways. The organization implementing the
target service may not accurately anticipate the amount of load the service may expe-
rience. Alternatively, a third-party application installed on the same physical machine
may inadvertently consume all CPU time. The result in both of these situations is the
target process gets starved of CPU time.

This condition was simulated in two ways to accurately capture both scenarios outlined
above: 1) by downsizing the number of virtual CPUs available to the target VM, and 2)
by introducing a third-party application that ran at 100% CPU.

3.2.2. Under-Resourced Memory

Available memory can be limited in a few ways. As with the under-resourced CPU,
the implementing organization may under estimate the amount of memory that will be
needed by a server to handle the required demand. Additionally, a third-party application
could contain a memory leak. In both cases, the target application may not have enough
memory to accomplish the assigned work.

To test this load, this experiment created both conditions outlined above by reducing
the amount of memory available to the target VM, and by running a third-party appli-
cation with an intentional memory leak on the target system that slowly consumes all of
the available system memory.

3.2.3. Heap Space Corruption

Heap-space corruption can happen in a production environment in a few ways. First, in
the Windows operating system, device drivers share critical kernel mode libraries and
have elevated permissions (Russinovich and Solomon 2009). If a hardware device driver
developer inadvertently writes to an area of memory not allocated for the software, it
may corrupt the memory of another process.

In this experiment, the focus of this load was on the user database. First, users that
had been cached by the DC process were corrupted. Next, to simulate a disk failure, the
same user was corrupted on disk. To do this, the W-SWFIT code was modified to be
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able to search and write anywhere in a processes memory. For the Apache web server,
the same technique was applied to the web pages to be served.

3.2.4. Reported Errors

This research focuses on detecting failures from reported errors instead of system in-
formation. These are the messages the system logs. As pointed out by Salfner, Lenk,
and Malek (2010), a predictor only given system information is not typically able to
determine the difference between a system that is going to fail and one that is perhaps
under higher than average load. It may be able to pick up on undetected errors, but
there is little to distinguish those from every day use. Consider the DC and a memory
leak situation. According to Russinovich and Solomon (2009), the MS DC will use as
much memory as is available to cache user credentials. This consumption of all available
memory may appear very similar to a memory leak if system information is all that is
being recorded.

4. Experimental Results and Analysis

To test the extended AFP framework, failure data was generated before a series of major
software updates using software fault injection, under-resourced CPU, under-resourced
memory, and heap space corruption, on two Windows Server 2008 machines: the DC,
and the Apache web server. The failure data was used to train two statistical prediction
models: an SVM classifier, and a boosted decision tree. Following the software updates,
more failure data was generated and the old statistical models were used to predict
failure in the new data. Finally, new statistical models were trained using the new data.
To compare each fault load both before and after the software updates, performance was
measured using the Area Under the Curve (AUC) and F-Measure.

In general, the AFP framework works by virtually cloning the target production system
after it has determined that system has changed. In this case, this determination is made
after several important software updates. The framework then generates realistic work
for the cloned service to perform, which accelerates the activation of an injected fault.
When the cloned system is sufficiently loaded, faults are injected until failure occurs.
Once failure has occurred, the recorded data is used to train a statistical learning model.
The new model then replaces the existing model if it performs better.

Since log messages were used to train the statistical model, they needed to be trans-
formed to numerical data. During execution, event messages were stored in a flat file
on the Ubuntu machine by the syslog server daemon in the Snare4 MSWinEventLog
format. The first element in each message is the time-stamp and host name of the sender
prepended by the syslog server daemon: May 8 14:31:52 dc.afnet.com. The remainder of
the message contains tab delimited values where the keys (and consequent features) are
shown in Table 3. Of these features, Criticality, EventLogSource, EventID, SourceName,
and CategoryString were selected for further encoding.

Events were filtered by EventID as is done by Fulp, Fink, and Haack (2008) to reduce
the noise generated by successful login attempts. Log messages with IDs shown in Table 4
were filtered from the input.

Next, to encode the time dimension and reduce the sequential message ordering de-
pendency, a sliding time window was created by counting each unique entry for each
feature within the data window (∆td) (Vaarandi 2002). During this stage, the number

4http://wiki.rsyslog.com/index.php/Snare_and_rsyslog
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Table 3. Typical authentication message sent as keys that cor-

respond to the values as designated in the Snare protocol for
MSWinEventLog used by the SolarWinds syslog agent.

Key Value

HostName dc.afnet.com
Criticality 5
EventLogSource Security
Counter 3
SubmitTime Sun May 08 14:31:50 2016
EventID 4672
SourceName Microsoft-Windows-Security-Auditing
UserName N/A
SIDType Audit Success
EventLogType dc.afnet.com
ComputerName 12548
CategoryString Special privileges assigned to. . .
ExtendedDataString Security ID: S-1-5-21-2379403. . .

Table 4. Microsoft log message IDs5.
ID Message

4624 An account was successfully logged on.
4634 An account was logged off.
4672 Special privileges assigned to new logon.
4769 A Kerberos service ticket was requested.
4770 A Kerberos service ticket was renewed.
4776 The computer attempted to validate the credentials for an account.

Table 5. Sample message data window af-
ter translation.

Predictor Value

FailureWindow 0
NumObservations 2
Criticality: 6 2
Criticality: 2 0
Criticality: 4 0
EventLogSource: Application 1
EventLogSource: System 1

of messages that were reported in the data window were also recorded and used as a
feature.

Finally, each time window preceding the failure within ∆tl was labelled as failure
prone (Irrera, Vieira, and Duraes 2015). This encoding enables the use of classification
algorithms in the training phase. An example of the final encoding is shown in Table 5.

Feature reduction was performed for both learning algorithms on a sliding time window
(Fulp, Fink, and Haack 2008; Irrera, Pereira, and Vieira 2013; Vaarandi 2002). This
transformed data was then used to train SVM and boosted decision tree models using
cross validation on 5 recorded failure runs for each fault load for both systems before and
after the software updates. Upon completion of the data generation and model training,
several performance measures were calculated on held out test data.

4.1. Microsoft (MS) Domain Controller (DC) Results

The MS DC was configured in the virtual environment to host a 30,000 user database and
perform Domain Name System (DNS) and authentication for all workstations. The target
of the fault injection was the lsass.exe process, and specifically the ntdsa.dll library. This
library is responsible for processing authentication requests and handles interaction with
the user database.

5https://support.microsoft.com/en-us/kb/977519
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Table 6. SVM test data confusion matrix.
Actual

Fail No-Fail

Predicted
Fail 52 6
No-Fail 9 607

Fault Injection. Fault injection was effective at creating a failure, but unfortunately,
each failure observed occurred immediately after introducing the fault. Because there
was no delay between injection and failure (∆tl ≈ 0), there did not exist any indicators
of failure. Consequently, machine learning cannot help in this situation. According to
Russinovich and Solomon (2009) the lsass.exe process, as well as other critical system
processes, are at the top of the structured exception handling stack and do not handle
exceptions. When faced with exceptions, the processes exit and the system reboots.

Under-Resourced CPU. While this load resulted in authentication requests that took
longer, this load never led to failure. To test this load, the virtual domain controllers
resources were reduced. The CPU went from a dual-core to a single virtual CPU, and
the memory was reduced from 2 Gb to 512 Mb. This reduction was well beneath the
recommended capacity for a domain controller (Makbulolu and Geelen 2012). The work-
load generator was then allowed to run against this configuration for seven days. For the
duration of the test, the CPU load was 100%, and physical memory was 90% utilized on
average. While the service did experience reduced response time, failure did not occur.

Another test was conducted to test this load by allowing a third-party application to
slowly consume all CPU time. Much like the previous test, this test never resulted in
failure. Consequently, the learning was not attempted for this load.

Under-Resourced Memory. The under-resourced memory load was the first that created
observable indicators of failure with any lead time. This load produced the best per-
forming predictors and the largest sliding time window for prediction of sixty seconds.
For this reason, this experiment explores the use of two machine learning models: the
weighted SVM, and boosted decision trees using the multinomial distribution.

Weighted SVM. For this prediction method, the e1071 package in R was used to train
an SVM. The tune function was used to run a 5-fold cross-validation a total of 48 times
to select the best performing parameters (gamma, cost, and degree polynomial) using:
four kernels, four sliding data/prediction windows, and three training/test data splits.
The classification weights were set to roughly equal the proportion of failure prone to
non-failure prone data windows 0.8 for failure, and 0.2 for non-failure.

The best performing parameters were the Radial kernel with γ = 0.1, c = 1, time
window = 60 seconds, and the split of data = 4 of the observed failures used for training,
with the remaining used for test.

Test data is evaluated in temporal order over two data windows. The resulting preci-
sion/recall and ROC curves are shown in Figure 3. Table 6 shows the confusion matrix on
test data created before software updates on threshold with highest F-Measure = 0.8739.

After the software update, the same model was used on a new set of generated failures.
The old model did not accurately classify a single failure prone time window. A new
model was then trained with the newly generated failure data. Unfortunately, after this
software update, with all other things held constant, the weighted SVM model was unable
to achieve the same level of performance as before resulting in a maximum F-Measure of
0.4380.
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(a) Precision/Recall Curve. (b) ROC Curve (AUC = 0.8664).

Figure 3. Test data performance of the SVM prediction method on failure data obtained by consuming all available

memory until target application fails.

(a) Precision/Recall Curves. (b) ROC Curves.

Figure 4. Performance of the boosting prediction method on data generated by consuming all available memory
until target application fails.

Table 7. Boosting pre-update test data con-
fusion matrix.

Actual
Fail No-Fail

Predicted
Fail 60 0
No-Fail 1 412

Table 8. Boosting post-update old model test

data confusion matrix.
Actual

Fail No-Fail

Predicted
Fail 19 1
No-Fail 42 222

Boosted Decision Trees. For this prediction model, the gbm package in R was used to
train a boosted decision tree. Cross-validation was used to select λ = 0.03, the interaction
depth of = 4, and the number of trees = 1000. The multinomial distribution was used
to perform classification.

The precision/recall, and ROC curves on a sixty second data/prediction window are
shown in Figure 4. The confusion matrix at the optimal threshold for F-measure is shown
in Table 7.

After the software update, the same prediction model was used new set of generated
failures. The precision/recall and ROC curves on data generated after the software update
using the old model are shown in Figure 4. The confusion matrix at the optimal threshold
for F-measure is shown in Table 7

Finally, a new predictor was trained using more generated failures as was done before
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Table 9. Boosting post-update new model

test data confusion matrix.
Actual

Fail No-Fail

Predicted
Fail 58 5
No-Fail 3 218

the update. The precision/recall, and ROC curves on the held-out test data are shown
in Figure 4 and the confusion matrix at the optimal threshold for F-measure is shown in
Table 9.

In summary, before the software update, the boosted decision tree performed using
test data with an AUC of 0.9984. After the software update, the test AUC dropped to
0.4854 but was retrained to achieve an AUC of 0.9801.

Heap Space Corruption. Just as with fault injection, heap space corruption was able
to produce failures, but these failures were not preceded by any indicators. To increase
realism, the focus of the corruption was on the user database. The user database is
incrementally cached as authentication requests are received (Russinovich and Solomon
2009). To test this load, the AFP execution phase was run as normal. After the workload
generator reached a steady state, a single user in the database on disk was corrupted
followed immediately by the same user being corrupted in process memory. If the disk
was not corrupted along with memory, the process would treated the corruption as a
cache miss, and re-cached the user from disk. When both were corrupted simultaneously,
the process crashed and forced system reboot the very next time that user requested
authentication. Unfortunately, exactly as with fault injection, there were no preceding
indicators of failure and thus training a prediction model was unsuccessful.

4.1.1. Web Server

To validate the approach and implementation of the AFP framework in this experiment,
it was also tested against an Apache web server. The underlying system change in this
experiment was simulated by upgrading Apache from version 2.2.31 x64 to version 2.4.20
x64. Results for the web server were almost identical to those for the DC for each load.
The only predictable failure was in the case of the memory leak. The following sub-
sections outline specific results after testing each load.

Fault Injection. In the case of the web server, each library loaded by the Apache server
process httpd.exe was targeted for fault injection. In every case, faults were injected until
failure occurred. Much like the DC, for each failure observed, no preceding indications
of failure were visible in the log messages.

Under-Resourced CPU. Much like with the DC, both methods of creating this situation
resulted in no failure. The client machines did experience delayed responses, but the
server continued to run.

Under-Resourced Memory. As with the DC, this was the only load that could be used to
predict failure given only reported errors. However, machine learning was not necessary
given the low number of log messages produced. Since Apache stores access requests in
a separate file, they were essentially pre-filtered. Apache also by default, stores error
messages in an external log. There were no messages reported in this file in any of the
failure runs conducted. The only indicators produced, were reported by Windows and
recorded by the rsyslog server. An average number of 15 messages were reported during
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each round of the execution phase and the indicators of failure were easy to see. In this
case, simple rules could be used to predict failure in this process so a learning algorithm
was not trained.

After the Apache software update was applied, the indicators of failure did not change
and there were no additional messages reported in the separate error log. For this reason,
the same updates were applied to the operating system as was done for the DC target.
After these updates, the indicators changed slightly but were still very few and could be
used to write a few simple rules.

These results do not diminish the utility of the AFP framework. Without the frame-
work, the indicators would still be unknown until after a failure. Moreover, there would
be no way to tell how long a set of rules would be effective after being written.

Heap Space Corruption. Heap space corruption was tested against the Apache server by
targeting the actual web page stored in memory. Much like was done by the DC with
users, this was treated as a cache miss and the content was retrieved from disk. Again,
to simulate a disk failure, this file was made inaccessible. The result was an immediate
failure to serve the content. As with the DC, there were no preceding indications of
failure.

4.1.2. Summary

In summary, the memory leak was the only load usable for training a statistical model
to predict failure based only on reported errors. As expected, the software update did
drastically reduce the effectiveness of a model trained with failure data before the software
update. The boosted decision tree was re-trainable after the software update whereas
the SVM was not. This suggests that both models should be used to ensure the AFP
framework maintains at least one useful predictor and is adaptable to underlying system
changes.

Perhaps most interestingly, fault injection as was used in the original AFP framework
implementation, had two extreme outcomes: 1) no failure, or 2) immediate failure. In
the controlled virtual environment, failure was predictable using polled system health
information, but perhaps the indicators used to predict the failure were not actual errors
but the fault injection tool itself injecting faults. Since during the golden runs, the fault
injection tool never wrote to another processes memory, it is possible that a predictor
could identify these operations if system health statistics are used as features instead of
reported errors. Furthermore, even only using the Operator for Missing Function Call
(OMFC), there were still thousands of injection points in the Windows Server 2008
operating system. Identifying the handful that may activate in a realistic way without
crashing the target service immediately is not trivial. Clearly more work must be done
to validate using fault injection alone in the AFP framework.

5. Conclusion and Future Work

The presented AFP framework extends the current AFP framework with additional fault
loads which can be used to effectively predict failures that might occur in a production
environment, and is capable of adapting to underlying system changes using only reported
errors. As was demonstrated with the SVM predictor, the underlying system changes can
introduce or eliminate an applications vulnerability to certain types of faults. For this
reason, if the extended AFP framework is implemented on MS Windows 2008, all fault
loads should be used in the execution and training phases.
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An additional area of exploration should be to better identify how fault injection
actually affects the underlying system. This research has shown that in some cases, it
can be extremely difficult to identify areas that will create realistic failure conditions with
any preceding indicators. Even when constrained, a single library can have hundreds of
injection points. Furthermore, in some cases, even when all injection points are tested,
none may lead to a realistic failure. For this reason, the additional fault loads play an
integral role.
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