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ABSTRACT
This paper merges hierarchical reinforcement learning (HRL)
with ant colony optimization (ACO) to produce a HRL ACO
algorithm capable of generating solutions for large domains.
This paper describes two specific implementations of the new
algorithm: the first a modification to Dietterich’s MAXQ-Q
HRL algorithm, the second a hierarchical ant colony system
algorithm. These implementations generate faster results,
with little to no significant change in the quality of solutions
for the tested problem domains. The application of ACO to
the MAXQ-Q algorithm replaces the reinforcement learn-
ing, Q-learning, with the modified ant colony optimization
method, Ant-Q. This algorithm, MAXQ-AntQ, converges to
solutions not significantly different from MAXQ-Q in 88%
of the time. This paper then transfers HRL techniques to
the ACO domain and traveling salesman problem (TSP).
To apply HRL to ACO, a hierarchy must be created for the
TSP. A data clustering algorithm creates these subtasks,
with an ACO algorithm to solve the individual and com-
plete problems. This paper tests two clustering algorithms,
k-means and G-means. The results demonstrate the algo-
rithm with data clustering produces solutions 20 times faster
with 5-10% decrease in solution quality due to the effects of
clustering.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search
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Algorithms
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1. INTRODUCTION
Many real world problems, including scheduling, and plan-

ning, require optimized solutions. Optimization techniques
provide a way to search for these solutions efficiently. Ant
colony optimization (ACO) is one of these methods and the
focus of this paper. ACO generates solutions efficiently and
effectively but scales poorly to large problems. This paper
merges the methods developed for reinforcement learning
and hierarchical reinforcement learning (HRL) with ACO
to produce an algorithm that scales to solve large, complex
optimization problems. This hierarchical ant colony opti-
mization algorithm focuses on two problem domains, the
taxi world and traveling salesman problems.

The paper shows two results. The first demonstrates ant
colony optimization learning algorithms placed into HRL
algorithms reduces the overall learning time for those do-
mains. Specifically, the MAXQ HRL algorithm introduced
by Dietterich [3] and the taxi world problem. By incorpo-
rating the Ant-Q ACO learning method, the episode conver-
gence is reduced significantly for large state space problems.
The second is that transfering HRL methodologies to the
ant colony optimization domain and the traveling salesman
problem to decompose the TSP increases the speed of the
solving algorithm with little to no loss in solution quality. To
demonstrate this, this paper looks at the logical decomposi-
tion of spatial location and clusters the cities into separate
problems to provide the decomposition.

2. BACKGROUND
Reinforcement learning (RL) is a method by which an

agent learns near-optimal plans through interaction with the
external environment [15]. This ability to interact with the
environment allows the agent to learn plans without a model
of state space interactions. Another benefit of reinforcement
learning is the ability to use function approximations that
reduce the time needed to solve problems and provides for
solving larger problems [13]. RL is effected by dimension-
ality, with an exponential growth in memory and compu-
tational requirements as the problem size grows [15]. For
this reason, HRL methods have been designed attempting



to alleviate these issues. HRL decomposes a problem into
smaller subproblems and learns by environment responses
for each concurrently with an overarching method that com-
bines these subproblem solutions into a near-optimal solu-
tion for the entire problem [1].

2.1 Reinforcement Learning
A reinforcement learning algorithm attempts to learn an

optimal value function for an unknown semi-Markofv deci-
sion process (SMDP). Following the model of an MDP, the
agent knows the current state and the actions available. The
algorithm chooses an action and observes the resultant state
and reward. We focus on the following techniques, one used
by Dietterich in his MAXQ HRL method, Q learning [18]
and the ant colony optimization algorithm, Ant-Q [6], for
adaptation into the MAXQ HRL decomposition. The state-
action pair update equations are similar for these two learn-
ing methods. The value of a state-action pair is updated
after every iteration of performing an action and observing
the resultant state and reward.

2.1.1 Q-Learning
Q-Learning is a reinforcement learning method designed

to handle a non-deterministic MDPs [18]. Originally defined
as a dynamic programming method to provide a framework
for learning algorithms, Watkins’ Q-learning has become a
standard reinforcement learning technique [18].

Q-learning relies on a value function, Q(s, a), consisting
of the current state, s ∈ S, and action, a ∈ A, to control
the agent. In Q-learning the agent searches for theQ(s, a)
values that represent that state and action pairs expecta-
tion for future rewards. Q-learning uses an ε-greedy action
selection policy to select an action to take at each state. An
ε-greedy policy takes the action with the highest Q-value
for the current state the majority of the time, but selects a
random action with a probability of ε [15]. This stochastic
nature ensures that if enough trials are completed, all pos-
sible actions will be selected and the optimal policy learned
[15]. The Q(s, a) value function update follows Equation 1.

Q(s, a)← Q(s, a) + α[r + γ max
a′ Q(s′, a′)−Q(s, a)], (1)

where αt is the learning rate and γ is the future reward
discount factor[18]. Q-learning is proven to converge to the
optimal action-value function Q∗ with probability of 1 [8].

2.1.2 Hierarchical Reinforcement Learning
HRL decomposes a complex reinforcement learning prob-

lem into manageable parts. Techniques include separating
the problem across sets of machines designed to perform
pre-determined tasks [10], splitting the problem into a set of
temporal tasks, called options [16], and creating a hierarchy
of tasks to solve the problem [3]. All methods decompose
large problems into smaller problems that have individual
solutions and combine to create a final solution.

The first step to solve a hierarchical problem is to identify
the subtasks, primitive actions, and related hierarchy. The
decomposition takes the MDP and separates it into a set of
subtasks, these subtasks can be primitive actions or other
subtasks. The hierarchy creates a dependency between the
root task and the subtasks, where the solution of the root
is based on the solution for the subtask [1]. An important
aspect of the task graph is the arbitrary order of children,
the order is determined by the policy at the root’s level.

The graph only limits the action choices at each subtask [3].
Each of these subtasks contains three components. First, it
has a subtask policy πi, which dictates the selection order of
its children. Second, each subtask has a termination pred-
icate, that identifies when the subtask policy is complete.
Third, each subtask has a pseudo-reward function that as-
signs reward to all states encountered in the subtask [3].

The decomposition is the foundation for the MAXQ learn-
ing algorithm. If the agent follows the GLIE policy and is
further constrained to break ties in the same order, the algo-
rithm converges with probability 1 to the unique recursively
optimal policy for the root task in the task graph [3]. A re-
cursively optimal policy is a hierarchical policy such that for
all subtasks, the subtask policy is optimal for that SMDP
[3]. This differs from hierarchical optimal policy, which is op-
timal across all the policies learned within the hierarchical
constraints [1]. Dietterich chose to pursue the weaker recur-
sively optimal policy to allow for subtask reuse. By creating
the optimal subtask policy, it allows the policy learned to be
used regardless of the parameters passed in to the subtask.
This reuse reduces the time needed to learn a subtask and
thus reduces the overall problem time requirement [1].

2.2 Ant Colony Optimization
Mimicking the foraging behaviors of a colony of ants, the

ACO algorithm models the ants activities and the strategy
used by the colony. ACO follows the idea that each ant lays
pheromone along the ant’s path to mark the path taken, and
as the pheremone builds up, the shortest path is found [4].
Using the concept of a metaheuristic, ACO can be used to
provide solutions for many NP-complete problems [4]. Since
the emerging behavior for following the ACO metaheuristic
algorithm results in the ants finding the shortest path from
a source to a destination, the most common problem ACO
is tested against is the traveling salesman problem [2].

2.2.1 Ant-Q
Based on the ACO metaheuristic, Ant-Q was developed

to merge Q-learning with the ACO concept [6]. Using the
ACS algorithm to perform action selection and pheromone
updates, Ant-Q matches the Q-learning value functions with
its own Q-value function, AQ(s, a), where s is the current
state and a is the selected action. It returns the value of
performing the action a from the state s. The concept is
the same as Q-learning with the addition of multiple runs
by multiple agents to solve the problem [6]. Ant-Q uses a
pseudo Q-value function as the value function with a similar
but varied learning function:

AQ(s, a)← (1−α)AQ(s, a)+α[ΔAQ(s, a)+γ max
a′ AQ(s′, a′)],

(2)
where AQ(s,a) is equivalent to Q(s,a), α is the learning rate,
γ is the discount factor, and ΔAQ(s,a) is the delayed re-
ward update. Ant-Q also provides a method to update
the AQ-value function with delayed reinforcement. Gam-
bardella and Dorigo discuss two methods, a global-best and
an iteration-best delayed update [6]. The global-best update
is calculated by

ΔAQ(s, a) =

⎧⎪⎨
⎪⎩

W/Ck, if (s,a) is performed by

global best ant k

0, otherwise

. (3)

where W is a constant set to 10, based on the ant system



value [6], and Ck is the cost of the kth ant’s solution. The
iteration-best update is the same calculation as the global-
best update, but is based upon the iteration’s best ant,
not the global best. Gambardella and Dorigo selected the
iteration-best as the main source of delayed reinforcement
update based on results comparing both methods [6].

Similar to the ε-greedy selection of Q-learning, Ant-Q uses
a probability calculation to determine the action selection.
An action is selected by policy with a probability greater
than the constant q0, otherwise a random possible action
is selected [6]. This random action selection allows the al-
gorithm to explore the state space more and is one of the
foundations of ACO [2]. The stochastic calculation is based
on the probability

Pa(s) =
[AQ(s, a)]δ · [HE(s, a)]β∑

u∈As
[AQ(s, u)]δ · [HE(s, u)]β

, ifa ∈ As (4)

where δ and β are constants, u is all possible actions, HE(s, a)
is a heuristic evaluation for the state action pair, and As is
the set of admissible actions in state s. [6].

2.2.2 Ant Colony System
For convenience we explain ACS as it ised in solving the

TSP. The premise of the ACS is to track the tours found
by a set of ants across a period of time and update the
solutions created with an additional update to the best so-
lution discovered so far. ACS is explained with respect to
the traveling salesman problem in this article to show the
comparisons between algorithms. Each ant finds a solution
based on a series of next city selections. ACS uses a positive
feedback method to reinforce the better solutions found by
a set of ants [2]. The stochastic nature of the ant system
allows a solution to escape from local minima and promote
better exploration of the solution space. ACS also exploits
a candidate list, a set of the cl closest cities to the starting
city, where cl is constant. When the candidate list is empty,
the ant selects the closest city from those remaining. If the
candidate list is not empty, a probability is generated, if it
is below a threshold, q0, the city is selected based on

j = arg max
u∈Jk

i

{[τiu(t)] · [ηiu]β}, (5)

where i is current city, k is ant, Jk
i is remaining cities, τiu(t)

is the pheromone across edge (i, u), ηiu is the visibility of u
from i, and β is a constant. If greater than q0, the selection
is based on the probability

pk
ij(t) =

[τij(t)] · [ηij ]
β

∑
l∈Jk

i
[τil(t)] · [ηil]β

. (6)

These three selection criteria promote exploitation and ex-
ploration of the solution space. The max argument selec-
tion allows the ant to follow the pheromone, the probability
selection allows the ant to select another path away from
the strongest pheromone, and the closest city selection is a
local-greedy search [2]. After an ant selects the next city,
the pheromone on the selected edge is updated, as given by

τij(t)← (1− ρ) · τij(t) + ρ · τ0, (7)

where ρ is a constant and τ0 is

τ0 = (n · Lnn)−1, (8)

Lnn is the tour length found through the nearest neighbor
heuristic. After all ants have found a complete tour, a com-
parison between each ant’s solution and the current best
solution found is made. If an ant has a better solution, this
solution becomes the best solution. A global pheromone
update is then made based on the best solution

∀(i, j) ∈ T+, τij ← (1− ρ) · τij(t) + ρ ·Δτij(t), (9)

where

Δτij(t) = 1/L+, (10)

and T+ and L+ are the shortest tour and length respec-
tively. This process of ants finding solutions and updating
pheromone is repeated for a set number of iterations. The
last shortest path saved is the best path found through all
episodes and the pheromone matrix represents the learning
performed by the algorithm. However, ACS does not guar-
antee an optimal solution [5]. Since it is a valid documented
stochastic approach to solving the TSP, ACS provides a solid
algorithm to merge clustering into for result comparison [2].

2.3 Data Clustering
Data clustering is used to group data into common sets us-

ing an unsupervised method. Much like the HRL problems
and TSP, clustering is a difficult problem combinatorially.
Stochastic algorithms to estimate the final cluster solutions
have been develop to provide near-optimal solutions with
significantly less computational time. These algorithms pro-
vide the TSP task decomposition used to merge ACO do-
main with HRL methods. This paper looks at two common
clustering algorithms which meet this goal, k -means and G-
means.

2.3.1 k-Means
Data clustering by the k-means algorithm is a stochastic

search and cannot guarantee the optimal clustering solution.
The objective is to cluster an n-dimensional data set into k
clusters based on the given attribute values [9]. This paper
uses the k-means algorithm to cluster a 2-dimensional data
set. The mathematical objective is to minimize the global
error of all clusters [9]

min E =
k∑

i=1

∑
xj∈Si

|xj − μi|2, (11)

where there are k clusters of data points Si and μi is the
mean of each cluster’s data points.

The number of clusters, k, is determined before any clus-
tering begins. The algorithm begins with a random selec-
tion of these k means. All data points are then assigned
to the closest mean. After all data sets are determined, the
means’ locations are recalculated based on the attribute val-
ues of the data points assigned to them. The process is then
repeated until a predetermined convergence rate is passed;
when the total delta of the means is less than a threshold.
This signals convergence of the algorithm and clustering is
considered complete. With the presented algorithm, no care
is taken with the initial selection and the solution may ac-
tually decrease the effectiveness of the partitioning efforts.

2.3.2 G-Means
The issues with k-means clustering stem from the assump-

tions made about the data set, i.e. the value of k. Ad-



ditionally, mean-based clustering algorithms, k-means in-
cluded, assume the data is in a unimodal distribution, such
as Gaussian [7]. Therefore, only one mean should repre-
sent the data in that distribution. Using too many means
creates a complex and inefficient representation. Likewise,
using too few abstracts the distribution differences and cre-
ates a too simple data representation [7]. With a constant k
value, k-means cannot distinguish between the complex and
abstracted representations. G-means alleviates the need to
predetermine k and uses a statistical calculation to decide
whether to split a simple mean into two or keep it the same
[7].

The algorithm performs the clustering in the same man-
ner as k-means with a possiblity for increasing k after each
episode. A set of means is created, starting with only one
mean. The G-means algorithm calls the k-means with the
single mean. The data is then clustered and examined. G-
means uses the Anderson-Darling statistic to determine if a
mean should be split or not [7]. The statistical calculation
to be examined, modified for mean estimation [7]

A2
∗(Z) = A2(Z)(1 +

4

n
− 25

n2
), (12)

where

A2(Z) = − 1

n

n∑
i=1

(2i−1)[log(zi)+ log(1−zn+1−i)]−n (13)

These equations provide the test for the split of a cluster.
The algorithm follows these steps to determine if a cluster
is to be split. A mean is selected and a significance level α
is chosen. Two centers are initialized based on the selected
mean. Hamerly suggests two methods to determine the new
means. We use the first method he suggests; select a small
vector, m, which provides two new means at μ ± m [7].
The algorithm then runs k-means on the data set and the
two new starting means. The means calculated by k-means
produce a vector between them, v = c1 − c2. The algorithm
projects the data onto the new vector v by

∀x ∈ X, x′ = 〈x, v〉/‖v‖2, (14)

and transforms it to a mean of 0 and variance of 1. Finally,
zi is calculated and substituted into Equation 12. If A2

∗(Z)
is within the confidence level α, then reject the new means
and replace with the original one. Otherwise, discard the
original mean and accept the new ones. Hamerly showed this
algorithm correctly identifies the number of centers needed
regardless of the data distribution or density [7]. By using
G-means, the clusters will not have a predetermined k value
and more accurately and effectively partition the data.

3. METHODOLOGY
The first step is to develop the combined HRL and ACO

algorithm using MAXQ and the ACO metaheuristic. The
basic concept is to use ACO to replace the current learning
methods in MAXQ and increase the searchable state space
for a set of domains. Following this is the application of
HRL concepts to ACS.

3.1 MAXQ with Ant-Q Learning
The identified modifications create a MAXQ-AntQ algo-

rithm used to find a solution to a multiple task problem

Figure 1: A sample task hierarchy graph for the Taxi
World Problem.

with a predefined task hierarchy. The new algorithm demon-
strates ant colony optimization techniques are useful in a hi-
erarchical reinforcement learning domain. Through rigorous
testing of several taxi world problems, the MAXQ-AntQ al-
gorithm demonstrates its ability to converge to a solution in
fewer episodes than Dietterich’s MAXQ-Q algorithm. The
taxi world problem uses the task hierarchy identified in Fig-
ure 1.

Using the MAXQ algorithm as the foundation to apply
Ant-Q learning to, the resultant MAXQ-AntQ algorithm,
has four modifications:

1. Adaptation of the Ant-Q value function for primitive
nodes

2. Iteration through the set of ants (adds to non-primitive
node implementation)

3. Probabilistic action selection (replaces greedy policy)

4. Adaptation of the Ant-Q value function

These changes implement a version of the ant colony opti-
mization metaheuristic within the HRL algorithm, merging
the two domains to solve larger problems faster.

The first modification replaces the value function with a
modified Ant-Q value function that uses the sub-task pseudo-
reward function rt(i) instead of ΔAQ, where i is the subtask
index:

AQt(i, s)← (1− αt(i)) ·AQt(i, s) + αt(i) · rt(i). (15)

The second modification implements a set of ants to solve
the current task. By looping through M ants the algorithm
creates the colony and creates the global pheromone ma-
trix. This matrix holds the Ant-Q value function value for
primitive actions as a state-action pair. In addition, a com-
posite Ant-Q value function is created to store the higher
level node values given a state-action pair. The next modi-
fication replaces MAXQ’s greedy policy for action selection
with Ant-Q’s probabilistic selection, Eq. 6. This probability
causes the ants to explore the solution space based upon the
probability q0. This change doesn’t affect the overall algo-
rithm as much as other modifications, as it is similar to the
ε-greedy policy currently used by MAXQ. The final change
modifies the composite value function. It replaces the cur-
rent MAXQ composite function with the Ant-Q value func-
tion. Since the MAXQ value function takes an eligibility
trace (reward degradation) into account, the Ant-Q value
function is modified to fit this desire. The reward degrada-
tion is determined by the number of actions needed to make



Figure 2: A sample hierarchy for a 250-city TSP
with the number of cities assigned to each cluster.

the current task terminal [3].

AQCt+1(i, s, a)← (1− αt(i)) · AQCt(i, s, a)+
αt(i) · γN [AQCt(i, s

′, a∗) + AQt(a
∗, s′)]
(16)

There is a second MAXQ-Ant-Q value function, a compos-
ite value, ˜AQC(i, s, a). This composite value, calculated at
non-leaf nodes, is used to identify primitive tasks and pro-
vide a value for the higher level task with a state-action pair
[3].

˜AQCt+1(i, s, a)← (1− αt(i)) · ˜AQCt(i, s, a) + αt(i) · γN ·
[R̃i(s

′) + ˜AQCt(i, s
′, a∗) + AQt(a

∗, s)]
(17)

3.2 HRL Ant Colony System
This section applies the concepts promoted in Dietterich’s

MAXQ to the ant colony optimization domain for solving
the TSP. To exploit the benefits of HRL, the TSP has a
task hierarchy imposed on it. This paper examines the use
of data clustering to create this hierarchy. Two algorithms
are tested, k-means and G-means detailed above. These al-
gorithms partition the TSP into a set of subproblems, which
when solved individually combine to generate the complete
solution.

The combination of the ACS with a data-clustering algo-
rithm is shown in Algorithm 1. The objective is to effectively
create a hierarchy of subtasks by partitioning the overall
problem into smaller TSPs. Unlike Dietterich’s MAXQ, the
actual hierarchy is not programmed by the developer, in-
stead, the algorithm makes use of the data clustering tech-
niques to determine the hierarchy dynamically. Figure 2
shows a sample hierarchy generated for a 250 city TSP. This
hierarchy not only changes from problem to problem, but
each episode of a problem could have a different hierarchy.
The ability to dynamically create the hierarchy is one of the
areas Dietterich recommends as future extension to MAXQ
[3]. Fortunately, TSPs have a potential partitioning method
built into the domain, other domains are not as easily dy-
namically partitioned. The new algorithm follows the struc-
ture of MAXQ-AntQ. It is a recursive function that traverses
the task hierarchy with the subtasks being clusters from the
TSP. In the same manner as MAXQ-AntQ, it clusters the
TSP and each ant takes a path through the cluster and each
cluster builds a path in that cluster. The ant then returns
to select the next cluster to move to. Start and end cities
are selected between clusters using a local greedy search that
identifies the cluster means that are closest together and the
closest cities in each cluster pair.

4. RESULTS
This section discusses the testing of the HRL ACO algo-

rithms on two problem domains. There were two tests con-
ducted, the first, on the taxi world problem, includes various

Algorithm 1 HRL ACS with Clustering Algorithm

1: {function HRL-ACS-C(TSP t)}
2: let Tbest = ∅ be the best tour found for the TSP t
3: if t is a cluster TSP then
4: {Generate solution for cluster TSP}
5: Tbest = ACS-TSP(t) {ACS TSP alogorithm }
6: else
7: {Generate clusters and solutions for each subproblem}
8: let C = the set of clusters in t {by k-means or G-

means}
9: let TOURS = ∅ be the set of tours for all clusters

10: for each c ∈ C do
11: TOURS(c) = HRL-ACS-C(TSP (c))
12: end for
13: {Create a TSP for the means of the clusters}
14: let M = the set of means of C
15: Tm = ACS-TSP(TSP (M)) {ACS-TSP algorithm [5]}
16: {Combine the tours generated for all subproblems}
17: randomly select first edge, (i, j) ∈ Tm

18: find edge (q, r)|d(q, r) = min d(∀x ∈ Ci,∀y ∈ Cj)
19: let Ti = TOURS(i) be the tour for cluster i
20: select start city s0 ∈ Ci where edge (q, s0) ∈ Ti

21: add Ti to Tbest

22: add edge (q, r) to Tbest

23: let Tj = TOURS(j) be the tour for cluster j
24: add Tj to Tbest with starting city r
25: for each remaining cluster Cl ∈ Tm do
26: assign q ← T last

best

27: find edge (q, r)|d(q, r) = min d(1,∀y ∈ Cl)
28: add Tl to Tbest with starting city r
29: end for
30: assign q ← T last

best

31: add edge (q, s0) to Tbest

32: end if
33: return Tbest

34: {end HRL-ACS-C}

problems of increasing state space size and compares mean
training runtime to convergence between the MAXQ-Q and
MAXQ-AntQ algorithms. The second, on TSP, includes
problems increasing in city cardinality and compares tour
statistics and number of iterations of ACS-TSP, HRL ACS
with k-means, and HRL ACS with G-means. The imple-
mentations introduced in this paper were compared to the
results of their respective foundation algorithms, MAXQ-Q
for taxi world and ACS-TSP for TSP. The data is analyzed
and statistical differences are highlighted between the base-
lines and created algorithms. An Anderson-Darling test ver-
ifies the data is a normal distribution with an α of 0.01; this
value tests for more than one out of 100 values not under a
normal distribution curve. A t-test using an α of 5% deter-
mines significant differences between the mean convergence
for each algorithm.

4.1 MAXQ-AntQ
To assess the feasibility of merging ACO with MAXQ

HRL techniques, 30 runs were performed on a set of taxi
world problems. The Taxi World is a grid world problem,
given a grid of size l x m with walls described as lines be-
tween grid cells that block movement between the separated
cells. Four destinations are located randomly across the grid,
labelled as red, blue, green, and yellow. The passenger starts



Figure 3: A sample 5x5 Taxi World Problem, T is
the taxi, G, R, B, and Y are pickup and dropoff
locations.

randomly at one of these four locations. The taxi can start
at any grid location. The GLIE policy imposed is for the taxi
to first navigate from it’s start location to the passenger’s lo-
cation. Second, pickup the passenger. Third, navigate from
the passenger’s start location to the passenger’s destination.
Fourth, drop off the passenger. This series of tasks is con-
sidered an episode. An example 5x5 problem is shown in
Figure 3. Problems sizes of 5x5, 7x7, 10x10, 20x20, 30x30,
and 50x50 resulting in 500-50,000 states are tested. In a
world size of 5x5, there are 500 possible states: 25 squares,
5 locations for the passenger (counting four destinations and
the taxi), and 4 destinations [3]. Data collected includes the
number of moves in the current solution found by the algo-
rithm and the training run of convergence.

Since both algorithms, MAXQ-ANT and MAXQ-Q, use
the same update equations, the focus is on the convergence
of the algorithms to the known optimal solution. Although
not guaranteed to find the optimal solution, the algorithms
tend to converge to it for the smaller problems, with the
convergence for the larger solution space problems further
from optimal. The algorithms were allowed to run for 1000
training runs or until the update of the policy was less than
1.0%. Parameters for each learning method were kept con-
sistent with documented parameters [3] [6], λ = 0.9, α = 0.1,
β = 2, δ = 1, and ρ = 0.1. An episode is considered com-
plete when a solution is returned which meets the four goals
dictated by the taxi world problem.

The MAXQ-Q algorithm provides a documented baseline
for the taxi world problem domain. Examining the data
in Table 1, the modified algorithm MAXQ-AntQ converges
in significantly fewer episodes than Dietterich’s original al-
gorithm. The improvement is an average of 12.1% fewer
episodes to convergence by using the HRL-ACO-MAXQ al-
gorithm over MAXQ-Q. The best improvement is noted in
the 7x7 sized problem, a 17.8% less episodes mean conver-
gence rate. This improvement stems from the ability of
MAXQ-AntQ to use the set of ants at each level in the hier-
archy rather than the single agent used in MAXQ-Q [3]. Al-
though neither algorithm converges to the optimal solution
every time, both converge to near-optimal solutions with no
significant difference in solution quality. These results show
Ant-Q can be adapted for use in a hierarchical reinforcement
learning domain. By integrating Ant-Q with MAXQ-Q, not
only does the learning rate increase, the combination of these
two concepts lends itself to other domain combination pos-
sibilities.

4.2 HRL ACS
The second set of tests incorporate the hierarchical de-

composition of the TSP with the ACS-TSP algorithm. The

Table 1: Convergence data for MAXQ and MAXQ-
AntQ on selected Taxi World Problems. Numbers
represent the episode number at convergence.

MAXQ MAXQ-AntQ
Problem Best Mean Best Mean

5x5 94 112±15 83 97±17
7x7 109 129±21 91 106±19

10x10 215 232±29 184 214±32
20x20 487 496±14 378 421±41
30x30 744 781±48 687 724±49
50x50 944 984±21 811 876±46

tests include problems ranging in size from 48 cities to 50,000
cities. These problems were tested with three algorithms,
ACS-TSP, HRL ACS with hierarchy generated by k-means
clustering, and HRL ACS with hierarchy generated by G-
means clustering. The algorithms were allowed to run a set
number of ants for a constant number of time steps. Data
collected includes the tour statistics and run time. The re-
sults identify a tradeoff between solution time and size versus
solution quality. The TSPLIB [12] problems were selected
to show the trends of each algorithm as the problem size
grows. In addition, several randomly created problems are
used to show the differences between the three algorithms
and highlight the effects of clustering on larger and non-
geographically modeled problems. Since these algorithms
were created for the sole purpose of this experiment, no
known optimal value is available to compare against, how-
ever each algorithm’s solutions can be contrasted. As be-
fore, these experiments used the parameters documented by
Dorigo in all three algorithms [5]. In addition, the larger
problems show the ability for the modified algorithms, HRL
ACS with k-means and G-means, to handle these problems,
whereas TSP-ACS cannot in a feasible amount of time.

Table 2 shows the tour and timing statistics for the three
algorithms. In the table there are several problems lwith
results abeled as ”—”; these problems have run times that
exceed 7 days (86,400 seconds). Unfortunately, the cluster-
ing did not show a continuum of the quality of solutions from
ACS-TSP to the other methods. However, the data showed
k-means (k is set to the number of cities divided by 25)
produces solutions an average of 5.0% further from optimal
than ACS-TSP. Whereas the G-means algorithm produced
solutions approximately 9.5% further from optimal.

Figure 4 shows the mean episode run time for each al-
gorithm, measured in seconds. Comparing the data, once
a problem could be clustered, there was a significant de-
crease in run time from the basic ACS-TSP to the other
algorithms. HRL ACS with k-means produced a solution
on average 20.88 times faster than ACS-TSP. HRL ACS
with G-means had similar improvements, with an average
speedup of 20.94 times faster. Taking all problems into ac-
count, G-means results in a decrease of 9.5% in run time
compared with k-means. This benefit is important given
the set of problems ACS-TSP was unable to solve in a rea-
sonable time. With problems larger than 5,000 cities, a test
run is unobtainable as the estimated time to complete an
episode of 1000 time steps is over 7 days. However, with
both k-means and G-means clustering, the algorithms were
able to produce a solution to the problem in just over 1 hour
per episode. The time decrease is the main benefit of the



Table 2: Comparison of Mean % from Known Best Tour Length and Run Time for ACS-TSP, HRL ACS
with k-Means Clustering, and HRL ACS with G-Means Clustering. A ”—” in results indicates run time was
greater then 7 days and ”N/A” identifies no known best solution.

ACS-TSP HRL ACS k-Means HRL ACS G-Means
Name % Best Run Time(s) % Best Run Time(s) % Best Run Time(s)

att48 6.99%‡ 99.31 7.03% 98.11 19.35% 16.60‡

eil51 9.56%‡ 114.95 8.03% 24.24† 14.04% 12.99‡

eil101 13.75%† ‡ 993.23 15.47% 86.23† 22.75% 22.54‡

a280 22.59%† ‡ 14377.42 27.68% 657.15† 27.11% 174.26‡

att532 23.23%† ‡ 66638.92 27.16% 4476.29† 26.32% 1960.91‡

pr1002 35.92% 70841.01 24.93%† 3736.97† 22.77%‡ 1005.07‡

u2152 28.34%‡ 615482.70 27.83% 4752.79† 30.66% 2179.71‡

rl5915 — 37.58%† 16980.36† 42.20%‡ 9463.71‡

rl11849 — 35.02%† 43874.86† 51.33%‡ 19630.67‡

usa13509 — 37.01%† 7754.47† 44.27%‡ 30344.16‡

d18512 — 31.87%† 15156.63† 38.14%‡ 40437.22‡

rand75 N/A 321.05 N/A 73.13† N/A 21.22‡

rand200 N/A 5514.16 N/A 232.93† N/A 48.28‡

rand500 N/A 30704.61 N/A 676.09† N/A 120.15‡

rand1000 N/A 129595.10 N/A 2386.40† N/A 345.85‡

rand2000 N/A 432708.33 N/A 3535.09† N/A 536.14‡

rand5000 N/A — N/A 13476.09† N/A 2039.26‡

rand10000 N/A — N/A 28929.07† N/A 102654.70‡

rand25000 N/A — N/A 128269.40† N/A 937460.60‡

rand50000 N/A — N/A 275468.46† N/A 1130765.40‡

† identifies significantly better results between ACS-TSP and HRL ACS with k-means.
‡ identifies significantly better results between ACS-TSP and HRL ACS with G-means.

Figure 4: A graph of the three TSP algorithms’ episode run time.



modified ACS-TSP algorithms. By providing a solution to
large complex TSPs in a faster manner, more problems can
be efficiently solved.

5. CONCLUSIONS
The results of testing the algorithms, MAXQ-AntQ and

HRL ACS with clustering, against the baseline algorithms,
MAXQ-Q and ACS-TSP, demonstrate that the combination
of the two concepts, HRL and ACO, is not only feasible
but beneficial. The first algorithm, MAXQ-AntQ, followes a
similar convergence pattern as the MAXQ-Q algorithm with
an added benefit of increasing the learning rate by decreasing
the number of training runs to convergence by an average
of 12.1%. There is no significant difference in quality of
solution, demonstrating Ant-Q learning inserted into MAXQ
provides a benefit to the algorithm.

The second algorithm is a modified ACS clustering algo-
rithms. Although both k-means and G-means on average
provided solutions further from optimal than ACS-TSP, the
difference was only 5.0% for k-means and 9.5% for G-means.
This decrease in solution quality was acceptable as the run
time speed up for both algorithms was greater than 20 times.
This is especially significant with large scale problems as the
modified algorithms obtain solutions while ACS could not.

One area not inspected by this research is the similari-
ties between multilevel techniques and HRL. Multilevel tech-
niques attempt to make problem instances simpler by coars-
ening the problem and refining the solutions of each coars-
ened problem in reverse order [17]. The algorithm constructs
a series of smaller and coarser versions of the original prob-
lem, with the hope each coarser problem retains the impor-
tant features of its parent problem [17]. The hypothesis of
this technique is that the coarsening gradually smooths the
objective function, a local search function should work well
as an optimization metaheuristic [17]. Much like HRL, mul-
tilevel techniques require a hierarchy to be created within
the original problem domain. Unlike HRL where the prob-
lem domain is split into low-level tasks, multilevel attempts
to simplify the entire problem [17]. These techniques, HRL
and multilevel, are similar and could be combined in an
effort to provide another method to generate solutions for
combinatorial optimization problems.

There are also several other areas to continue research into
combining HRL and ACO. The first is the selection of the
HRL algorithm. A selection of another HRL algorithm could
provide similar, if not better, results and demonstrate the
same properties. In addition, there are three areas to exam-
ine in automatically determining the hierarchy using clus-
tering: the clustering technique, the cluster combination,
and the base TSP algorithm. These areas can all be ex-
plored for more options and may provide a better algorithm
design through testing. The clustering technique research
could look at other cluster methodologies, X-means [11], or
even additional modifications to the two selected. The final
area is the ACS-TSP algorithm. There are several docu-
mented improvements to this baseline algorithm including
2/3-opt [5] and Max-Min Ant System [14]. Those adapta-
tions could only help with the solutions found using this
paper’s modified algorithms. By increasing the efficiency of
the foundation algorithms used, it will benefit all parts of
the TSP hierarchy.
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