

FUZZY STATE AGGREGATION AND OFF-POLICY REINFORCEMENT
LEARNING FOR STOCHASTIC ENVIRONMENTS

Dean C. Wardell and Gilbert L. Peterson
Air Force Institute of Technology

2950 Hobson Way
Wright-Patterson AFB, OH, 45433

USA
dean.wardell, gilbert.peterson@afit.edu

ABSTRACT
Reinforcement learning is one of the more attractive
machine learning technologies, due to its unsupervised
learning structure and ability to continually learn even as
the environment it is operating in changes. This ability to
learn in an unsupervised manner in a changing
environment is applicable in complex domains through
the use of function approximation of the domain’s policy.
The function approximation presented here is that of
fuzzy state aggregation. This article presents the use of
fuzzy state aggregation with the current policy hill
climbing methods of Win or Lose Fast (WoLF) and
policy-dynamics based WoLF (PD-WoLF), exceeding the
learning rate and performance of the combined fuzzy state
aggregation and Q-learning reinforcement learning.
Results of testing using the TileWorld domain
demonstrate the policy hill climbing performs better than
the existing Q-learning implementations.

KEY WORDS
Reinforcement Learning, Policy Hill-Climbing, Fuzzy
State Aggregation, Stochastic Environment

1. Introduction

 As researchers in the field of machine learning tackle
more and more complex problems, the obstacle of ever
increasing state-space sizes is a constant challenge.
Simply improving the speed of the algorithms frequently
cannot overcome the enormity of the state-space and
provide useful results in a timely manner.
 Using a state generalization architecture to limit the
size of the state space and approximate the learned policy
has been presented in several previous efforts [1, 2, 3].
Specifically, Berenji and Vengerov [4, 5] use fuzzy state
aggregation (FSA) as a means of effectively limiting the
state space in a Q-learning experiment.

One method of improving the results of Q-learning
consists of adding the use of a separate policy table to
track the probability of selecting an action from a given
state. The off-policy reinforcement learning algorithm,
policy hill climbing, yields improved empirical results
over on-policy methods [1]. Bowling and Veloso [6]

showed continued improvement over policy hill climbing
(PHC) by separating the delta update value into two
values, one which updates when winning and one for
loosing hence the name of Win or Lose Fast (WoLF)
policy hill climbing algorithm. Banjeree and Peng extend
WoLF, introducing a policy dynamics based version of
WoLF (PDWoLF), further improving results [7].

In this paper we present an application of fuzzy state
aggregation combined with three different policy hill-
climbing algorithms comparing the speed and efficacy of
their learning in the highly stochastic TileWorld [8]
environment. The results demonstrate the improved
performance of combining an off-policy reinforcement
learning method with FSA.

In section 2 of this paper we provide an overview of
these different methods and algorithms. Section 3 covers
the combinations of the FSA vector with PHC learning.
The TileWorld domain is described in section 4 and the
experiments conducted and results follow.

2. Background and Related Work
 State aggregation is a type of generalizing function
approximation which allows machine learning to learn in
larger environments more quickly. State aggregation
works by combining the states of a domain into groups
with some common value estimate [1]. When a state is
updated, the entire group is updated. The best known
methods for state aggregation are tile coding (also known
as sparse coarse coding) [1,9] artificial neural networks
[2], and fuzzy state aggregation [4,5]. In the following
section, fuzzy state aggregation is described.

2.1 Fuzzy State Aggregation

Fuzzy state aggregation uses Zadeh’s [10] concept of
fuzzy sets to represent the environment with a limited
number of “fuzzy states”. Fuzzy sets are sets that allow
elements to be partially in more than one set at a time.
The degree to which an element is a member of a fuzzy
set is measured on a scale between 0 and 1.
 For example, consider the outside ambient
temperature [11]. Classical set theory can only classify
the temperature as hot or cold (i.e., either 1 or 0). It
cannot interpret the temperature between 20°F and 100°F.

In other words, the characteristic function for the classical
logic for the above example is given by

⎪⎩

⎪
⎨
⎧

<

≥
=

coldasclassifiedFxiff
hotasclassifiedFxiff

x
o

o

Hot 500
501

)(μ

The boundary 50 °F is taken because classical logic
cannot interpret intermediate values. On the other hand,
fuzzy logic solves the above problem with a membership
function as given by

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

≤≤
−

<

=

Fxif

FxFifx
Fxif

x

o

oo

o

Hot

1001

10020
80

20
200

)(μ

The above membership function is graphed in Figure 1.
Demonstrating that the degree of coldness is the
complement of the degree of hotness.

Figure 1: Membership function for the degree of hotness and

degree of coldness [11]

 Fuzzy state aggregation is a variation of Singh’s soft
state aggregation [3], which uses probability values as a
measure of the extent to which the current state falls into
the various aggregate (cluster) states.
 Like soft state aggregation, fuzzy state aggregation
uses a fixed number (K) of aggregate states to represent
the environment and thus minimize the number states the
learning algorithm must deal with. Rather than using
probabilities, a crisp state (s) is represented by its degree
of simultaneous membership in each of the K fuzzy states.
The total number of fuzzy states is determined by the
number of fuzzy sets (labels) used and the number of state
variables.

2.3 Q-Learning

In the realm of reinforcement learning, Q-learning
[12] is one of the simplest and most commonly used
methods. Q-learning assigns values to state-action pairs
Q(s,a), and thus implicitly represents a policy. After the
algorithm selects an action, a, the Q table representing the
policy is updated based on the rewards received and the
expected rewards as represented by the Q value of the
resultant state, s’, according to the function:

[),()','(max),(),(' asQasQrasQasQ a −++←

where α is the learning rate (or step size), between 0 and
1, that controls convergence, and γ is the discount factor,
between 0 and 1, that makes rewards r that are earned
later exponentially less valuable

In Q-learning, the agent learns through continuous
interaction with the environment, during which it exploits
what it has learned so far. To ensure the agent is not
missing more valuable state-action pairs, it can also
explore. In practice, this means that the current
approximation Q is used to select an action most of the
time. However, in a small fraction of cases an action is
selected randomly from the available choices, so as to
explore and evaluate unseen state/action pairs.

2.4 Combining state aggregation with Q-learning
 In a domain with a large state-space, it is very
inefficient to learn separate Q-values for each state-action
pair. It is therefore, not uncommon to see Q-learning used
in conjunction with some form of state aggregation. When
implementing Q-learning with such an architecture, the
term Q(s,a,r) is used to approximate Q(s,a.) Here r is a
vector of the learned parameters. The fundamental
parameter updating rule for each time step t is [4]:

),,(tttttt rasQrrr Δ+← αδ (2)

Where α is the learning rate and δt is the Bellman error
used for the look-up vector in this corresponding learning
rule:

ttt asQasQ αδ+←),(),((3)

In discounted Q-learning the Bellman error is calculated
as follows:

),(),(max)(1 asQasQtg ttat −+= +γδ (4)

Where g(t) is the cost of taking the specific action and γ is
the discount rate.
 In this work we have specifically used fuzzy state
aggregation as the function approximation architecture.
Using this architecture, the Q-value of action a in state s
is calculated using:

∑
=

=
K

k
k askqasQ

1
),()(),(μ (5)

Where q(k) is the Q-value of the kth fuzzy state and μk(s,a)
is the degree of membership of state s to k with respect to
action a.
 Replacing ΔrtQ(st,a,rt) from equation (2) with μk(s,a),
the equation to update q(k) becomes:

),()()(askqkq ktKk μαδ+←∀ ∈ (6)

Otherwise, the Q-learning algorithm remains unchanged.

2.5 Policy Hill Climbing

]γα (1)

Policy Hill Climbing (PHC) is a simple extension of
Q-learning. The algorithm, performs hill-climbing
(seeking the highest global reward) in the space of mixed
policies. Q-values are maintained as an estimate of the
optimal policy. In addition to the Q-table, the algorithm

maintains the current mixed policy (policy table). The
PHC algorithm is shown in Table 1.
__

sa

sa

Aaa
sa

asa

sa

asasUpdate

A
aswhere

otherwise
asQaif

compute
asQupdateandsstatenextandrObserve

astoaccordingaactionselectsstatefrom
Loop

A
asandasQInitialize

Input

Δ+←

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

⎪⎩

⎪
⎨
⎧ ≠−

=Δ

←←

∈∈

∑
∈≠

),(),(

1
),,(min

)',(max

),('
),(,

.1),(0),(

].1,0(],1,0(

'

ππ

δπδ

δ

δ

π

π

δα

__

Table 1: Basic Policy Hill Climbing

The policy is improved by increasing the
probability that it selects the highest valued action
according to a learning rate]1,0(∈δ . When 1=δ the
algorithm is equivalent to Q-learning, since with each step
the policy moves to the greedy policy, always executing
the highest valued next step rather than pursuing the
greatest overall reward.

2.6 Win or Lose Fast (WoLF-PHC)

The WoLF-PHC [6] algorithm is a hill climber that
also uses a variable learning rate. The algorithm requires
two learning parameters . The parameter that is
used to update the policy depends on whether the agent
thinks it is currently winning or losing. This
determination consists of comparing whether the current
expected value is greater than the current expected value
of the average policy. If the current expected value is
lower (i.e., the agent is “losing”), then the larger learning
rate δ

wl δδ >

l is used, otherwise δw is used. The purpose of using
the variable learning rate is to increase the speed at which
the algorithm reaches the optimum policy. The functions
below are used to calculate δ for the WoLF-PHC
algorithm, and are the only changes to PHC in Table 1.
__

⎪⎩

⎪
⎨

⎧
>

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+←

∑ ∑
otherwise

asQasasQasif

sC
asasasas

l

A

a

A

a
w

δ

ππδ
δ

ππππ

),(),(),(),(

)(
),(),(),(),(

__
Table 2: Additional functions for WoLF-PHC

2.7 Policy Dynamics based Win or Lose Fast (PDWoLF)
 Like WoLF, PDWoLF [7] uses the variable learning
rate parameters and . Where WoLF checks itself
against an average policy to determine if it is winning or
losing, PDWoLF uses the change in policy from the

previous time step Δ(s,a) with the change in policy from
the current time step Δ

lδ wδ

sa, shown below.
__

sasa

__

l

w

asandaswhere

otherwise
asasif

Δ←ΔΔ−Δ←Δ

⎩
⎨
⎧ <ΔΔ

=

),(),,(

0),(),(

2

2

δ
δ

δ

Table 3: Additional functions used in PDWoLF-PHC

3. Combining PHC and FSA

 The use of state aggregation for function
approximation with Q-learning is not a new or unusual
concept [1, 3]. Berenji and Vengerov [4, 5] advanced this
work in their application of Q-learning and fuzzy state
aggregation. We have built upon their work by beginning
with fuzzy state aggregation and a basic Q-learning
algorithm and extending that to the application of PHC
algorithms. With the state-space constrained to K total
fuzzy states, we applied three different variants of a
Policy Hill Climbing algorithm; standard PHC, Win or
Lose Fast (WoLF) PHC and Policy Dynamics (PD)
WoLF-PHC. Our implementation of these algorithms uses
two vectors to represent the learned parameter data. The
q-vector q(k) as described previously and a policy vector
π(k).
 The q-vector holds the expected reward over time
which is iteratively updated using a common temporal-
difference formula. The π-vector holds the probabilities
used to select an action from a given state (the policy).
The policy decision of which action to take next is then
based on both the expected reward value (q) and the
policy value (π):

∑
=

=Π
K

k
k askqkas

1
),()()(),(μπ (7)

The vectors q(k) and π(k) are initialized as shown below:

20)(←kq and
AK

labelsfuzzyofnok .)(←π (8)

where A is the number of possible actions in the domain.
The reason for initializing π(k) this way may not be
intuitively obvious. Since we are using 3 fuzzy labels, the
initial value of each element of μk(s,a) is 1/3 before
learning begins. The elements of π(k) are initialized so
that

∑∑
= =

=
A

a

K

k
k ask

1 1
),()(1 μπ (9)

Normalizing it with a Boltzmann distribution to ensure
equation (9) remains true, the π-vector is updated as
follows:

⎥⎦
⎤

⎢⎣
⎡Δ+←∀ ∈),()()(as

K
kk k

sa
Kk μππ (10)

with Δsa calculated as:

⎪⎩

⎪
⎨
⎧ ≠−

=Δ ∑
∈≠

otherwise
asQaif

Aaa
sa

asa

sa

'

)',(max
δ

δ
 (11)

Where

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
= ∑

= 1
,),()(min

1 A
ask

K

k
ksa

δμπδ (12)

In this application δ is set in the range (0,1].
 Because our intent is to use Δsa to update the entire
summation

 (13) sa

K

k
k

K

k
k askask Δ+=∑∑

== 11
),()(),()(μπμπ

for a given action a the division used in equation (10) is
necessary to scale and weight Δsa correctly and prevent it
from causing disproportionate growth in the elements of
π(k).

3.1 Combining WoLF-PHC and Fuzzy State Aggregation
 Unlike the standard PHC algorithm, the WoLF-PHC
and PDWoLF-PHC both utilize a dynamic learning rate to
increase the speed of convergence over the standard PHC.
 The WoLF-PHC algorithm uses an additional vector
to estimate the average policy value. The average policy
vector is initialized like the π-vector:

AK
labelsfuzzyofnok .)(←π (14)

This vector is updated by

⎟
⎠
⎞

⎜
⎝
⎛ −

+←∀ ∈ C
kkkkKk
)()()()(ππππ (15)

where C is a counting function used to track how many
times the elements representing a state have been updated.
In this implementation all state elements for the selected
action are updated simultaneously, so C is simply the
number of times the algorithm has looped.
 The delta selection for determining the learning rate
in WoLF is then calculated as follows:

⎪⎩

⎪
⎨

⎧
>

= ∑ ∑∑∑
= = ==

otherwise

askqkaskqkif

l

K

k

K

k

A

a
kk

A

a
w

δ

μπμπδ
δ 1 1 11

),()()(),()()((16)

where δl>δw and both fall within the range (0,1]. This
value for δ is used to calculate Δsa as described in
equation (10) and is derived from the δ calculation of
WoLF in equation 16.

3.2 Applying PDWoLF to the FSA
 The PDWoLF-PHC also uses additional values to
change the learning rate. These are initialized as

0),(←Δ as and (17) 0),(2 ←Δ as
Where ∆ and ∆2 are changing rates within the policy and
are estimates of the slopes of the decision space. These
are respectively updated for the selected action as

.),(),(

),(),(),(

1

1

2

⎟
⎠

⎞
⎜
⎝

⎛ Δ
←Δ

Δ−⎟
⎠

⎞
⎜
⎝

⎛ Δ
←Δ

∑

∑

=

=

as
K

as

asas
K

as

k

K

k

sa

k

K

k

sa

μ

μ
 (18)

The delta selection then becomes

.
0),(),(2

⎩
⎨
⎧ <ΔΔ

=
otherwise

asasif

l

w

δ
δ

δ (19)

4. The Experimental Domain

 Our version of tile world was designed as a test-bed
for machine learning methods to be used in the very
stochastic world of robot soccer. Specifically, we focus on
the learning process for an agent with the ball to decide
which team mate to pass it to, and for the team mates to
decide where to move to best facilitate moving the ball
towards the goal.
 The domain for this experiment is the modified
TileWorld domain [8] used by Berenji and Vengerov
[4,5]. It consists of a 20 x 20 grid world which contains 5
reward opportunities and 5 deformations. The reward
opportunities each have random value of 20 to 100 points
and a random life span of 5 to 15 time steps. Anytime the
agent reaches a reward or the reward expires, it disappears
from the domain and another one is generated elsewhere
on the board. Agent can move 1 step each time step.
 Each deformation has a random penalty value of -5 to
-20 points and, unlike the rewards, these deformations
occasionally drift. At each time step each deformation has
a 10% chance of moving one square in a random
direction. Each deformation is also the center of a
potential field that radiates out based on the following
equation:

()
.

1 2+
=

d
vP (20)

Where v is the value of the deformation and d is the
distance from the deformation. The cost of each square in
the domain is the sum of the effects of each potential field
at that point.
 Each state in the domain is represented by 4 state
variables:

1. Distance to the reward
2. Value of the reward
3. Estimated life expectancy of the reward
4. Roughness of path to the reward

 The distance to the reward is calculated simply using
the Pythagorean Theorem. The value of each reward
randomly determined at the time it is generated. The
estimated life expectancy of a reward (L) is calculated by

L=m-t(r) (20)

where m is the mean life span (m=10 in this example) and
t(r) is the number of time steps that reward r has existed.

The roughness of the path to the reward is calculated by
constructing a rectangle with the agent and the reward at
opposite corners. The roughness is the average cost of all
the squares in that rectangle.
 At each time step the agent must decide which of the
reward opportunities to pursue. This decision is based on
the state variables described above.
 Once the decision is made, the agent moves one
square towards that opportunity, the policy is updated and
the process repeats.
 Because the agent can move in any of eight directions
(orthogonally or diagonally) there are always three
contiguous squares that the agent can choose from to
move towards the selected reward. At each time step the
agent simply uses the square with the lowest cost.
 With each step, the agent garners a negative reward
equivalent to the cost of the square it moves to. The agent
only receives a positive reward upon reaching a reward
opportunity before it expires.
 The function μk(s,a) in equations 5-7, 9, 10, 12, 13,
16 and 18 is the degree of membership of state s to k with
respect to action a. The value of each of the state
variables is described by 3 fuzzy labels (Small, Medium
and Large). The shapes of these fuzzy labels are shown in
figure 2.
 For each of the state variables, the fuzzy labels are
assigned so that they evenly divide the range of possible
values for the variable. The degree to which the agent is
in one of the fuzzy states is the mean of the degrees to
which all the state variables belong to the corresponding

Figure 2: Fuzzy labels used by the agent

labels in the fuzzy state. In this experiment we have used
4 state variables and 3 fuzzy labels resulting in 81 (34)
total fuzzy states. For comparison purposes, without fuzzy
state aggregation, this same domain would have 210
possible distance values, 80 possible reward values, 15
different life expectancy values and at least 1000 different
roughness values resulting in 2.52x109 possible states. By
limiting the state variable values to only integer values
(which is not the case in our experiment) this number
could be reduced to just over 320,000 states.
 At the beginning of each experiment the Q-values are
all set to 20. This number is selected because it is
comparable to the maximum Q-values found at the end of
the experiment and starting with this value results in some

natural exploration in the earliest stages of learning.
Because the entire q(k) vector and π(k) vector are updated
at each time step, learning occurs very quickly and no
dedicated exploration is required.

5. Experimental Results
 Our experiments were conducted by running multiple
games of 200 time-steps each. The q and π-vectors were
reinitialized at the beginning of each game and the same
number of games was run for each algorithm. The
parameter settings are α=0.1, γ=0.3, and δ=0.5.
Experience shows that the ratio of γ/α=3 works well in
most situations. Increasing the value of α only resulted in
a larger magnitude of Q values, but with no corresponding
increase in performance. Figure 3 shows the averaged
results of running 2000 games with just an on-policy Q-
learning algorithm compared to the basic off-policy hill
climbing algorithm. The results of multiple games are
averaged due to the highly stochastic nature of the
domain.

1

0

.50 .25 .75

S M L

Figure 3: Results of PHC vs. on-Policy Q-Learning

 Figure 4 shows results comparing WoLF-PHC and
PDWoLF-PHC algorithms to determine if the application
of a variable learning rate could improve performance.
For these algorithms we used the following parameter
settings: α=0.1, γ=0.3, δ=0.5, δw=0.2,and δl=0.8. These
values were chosen for δl and δw based on Bowling and
Veloso’s [6] finding that δl/δw=4 is a good ratio for using
WoLF in stochastic environments.

Figure 4: Results of PHC, WoLF and PDWoLF

Our efforts indicate that all three PHC algorithms
consistently provide similar results, despite varying the
values of each of these variables.
 The generalization of the crisp states into a fuzzy
state approximation vector smoothes the landscape of the
policy table to an extent that the use of the variable
learning rate has little effect. The use of the variable
learning rate in more chaotic policy landscapes is the key
to the improved performance previously demonstrated by
the WoLF-PHC and PDWoLF-PHC algorithms.

6. Conclusion and Future Work
 This work demonstrates the improvement of
combining fuzzy state aggregation (FSA) with each of
three different PHC algorithms over standard Q-Learning.
Both in terms of speed to convergence and the
convergence value itself. The resulting increase in
performance clearly shows the benefit of applying the off-
policy hill climbing algorithm to the FSA in this highly
stochastic environment. Unlike the results of using the
WoLF-PHC and PDWoLF-PHC algorithms in a crisp
environment, these two algorithms showed no improved
performance over the common PHC algorithm.
 Our future work will include applying this same
combination to more complex domains in an effort to
determine if the performance potential of the different
algorithms maps to the fuzzy set aggregation function
approximation method. We also plan to explore the
potential benefit of learning the optimal fuzzy label values
for each state variable as a means of further improving
performance.

References

[1] R.S. Sutton and A. G. Barto, Reinforcement learning:
an introduction (Cambridge, Massachusetts, MIT Press,
1998.

[2] S. Lawrence, A.C. Tsoi, and A.D. Back, Function
approximation with neural networks and local methods:

bias, variance and smoothness, In: P. Bartlett, A. Burkitt
and R. Williamson (eds), Australian Conference on
Neural Networks, Australian National University,
Australian National University, 1996, 16-21.

[3] S. P. Singh, T. Jaakkola, and M. I. Jordan.
Reinforcement learning with soft state aggregation. In
Advances in Neural Information Processing 7, MIT Press,
1994, 361-368.

[4] H.R. Berenji and D. Vengerov, Cooperation and
coordination between fuzzy reinforcement learning agents
in continuous state partially observable markov decision
processes, Proceedings of 1999 IEEE international Fuzzy
Systems Conference, Seoul, Korea, 1999, 621-627.

[5] H.R. Berenji and D. Vengerov, Advantages of
cooperation between reinforcement learning agents in
difficult stochastic problems, Proceedings of the 9th IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE
'00), San Antonio, Tx , 2000, 871-876.

[6] M. Bowling and M. Veloso, Multiagent learning using
a variable learning rate, Artificial intelligence 136, 2002,
215-250

[7] B. Banjeree and J. Peng, Adaptive policy gradient in
multiagent learning. AAMAS ’03 International joint
conference on Autonomous Agent and Multi- Agent
Systems, Melbourne, Australia, 2003

[8] M.E. Pollack and M. Ringuette, Introducing the
tileworld: experimentally evaluating agent architectures,
Eighth National Conference on Artificial Intelligence,
Menlo Park, CA, 1990.

[9] J.S. Albus, Data storage in the cerebellar model
articulation controller (CMAC). Trans-actions of the
ASME: Journal of Dynamic Systems, Measurement, and
Control, 1975, 228-233

[10] L.A. Zadeh, Fuzzy sets. Journal of information and
control 8, 1965, 338-353.

[11] S.N. Pant and K. E. Holbert. Fuzzy logic in decision
making and signal processing,
http://ceaspub.eas.asu.edu/PowerZone/FuzzyLogic/chapte
r%202/frame2.htm, March 2004.

[12] C. J. C. H. Watkins, Learning from delayed rewards,
Cambridge, UK, Cambridge University, Ph.D. thesis,
1989.

	ABSTRACT
	KEY WORDS

