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ABSTRACT 
Reinforcement learning is one of the more attractive 
machine learning technologies, due to its unsupervised 
learning structure and ability to continually learn even as 
the environment it is operating in changes. This ability to 
learn in an unsupervised manner in a changing 
environment is applicable in complex domains through 
the use of function approximation of the domain’s policy. 
The function approximation presented here is that of 
fuzzy state aggregation. This article presents the use of 
fuzzy state aggregation with the current policy hill 
climbing methods of Win or Lose Fast (WoLF) and 
policy-dynamics based WoLF (PD-WoLF), exceeding the 
learning rate and performance of the combined fuzzy state 
aggregation and Q-learning reinforcement learning. 
Results of testing using the TileWorld domain 
demonstrate the policy hill climbing performs better than 
the existing Q-learning implementations. 
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1. Introduction 
 
 As researchers in the field of machine learning tackle 
more and more complex problems, the obstacle of ever 
increasing state-space sizes is a constant challenge. 
Simply improving the speed of the algorithms frequently 
cannot overcome the enormity of the state-space and 
provide useful results in a timely manner.  
 Using a state generalization architecture to limit the 
size of the state space and approximate the learned policy 
has been presented in several previous efforts [1, 2, 3]. 
Specifically, Berenji and Vengerov [4, 5] use fuzzy state 
aggregation (FSA) as a means of effectively limiting the 
state space in a Q-learning experiment.  

One method of improving the results of Q-learning 
consists of adding the use of a separate policy table to 
track the probability of selecting an action from a given 
state. The off-policy reinforcement learning algorithm, 
policy hill climbing, yields improved empirical results 
over on-policy methods [1]. Bowling and Veloso [6] 

showed continued improvement over policy hill climbing 
(PHC) by separating the delta update value into two 
values, one which updates when winning and one for 
loosing hence the name of Win or Lose Fast (WoLF) 
policy hill climbing algorithm. Banjeree and Peng extend 
WoLF, introducing a policy dynamics based version of 
WoLF (PDWoLF), further improving results [7]. 

In this paper we present an application of fuzzy state 
aggregation combined with three different policy hill-
climbing algorithms comparing the speed and efficacy of 
their learning in the highly stochastic TileWorld [8] 
environment. The results demonstrate the improved 
performance of combining an off-policy reinforcement 
learning method with FSA.  

In section 2 of this paper we provide an overview of 
these different methods and algorithms. Section 3 covers 
the combinations of the FSA vector with PHC learning. 
The TileWorld domain is described in section 4 and the 
experiments conducted and results follow. 

 
2. Background and Related Work 
 State aggregation is a type of generalizing function 
approximation which allows machine learning to learn in 
larger environments more quickly. State aggregation 
works by combining the states of a domain into groups 
with some common value estimate [1]. When a state is 
updated, the entire group is updated. The best known 
methods for state aggregation are tile coding (also known 
as sparse coarse coding) [1,9] artificial neural networks 
[2], and fuzzy state aggregation [4,5]. In the following 
section, fuzzy state aggregation is described. 

 
2.1 Fuzzy State Aggregation 

Fuzzy state aggregation uses Zadeh’s [10] concept of 
fuzzy sets to represent the environment with a limited 
number of “fuzzy states”. Fuzzy sets are sets that allow 
elements to be partially in more than one set at a time. 
The degree to which an element is a member of a fuzzy 
set is measured on a scale between 0 and 1.  
  For example, consider the outside ambient 
temperature [11]. Classical set theory can only classify 
the temperature as hot or cold (i.e., either 1 or 0). It 
cannot interpret the temperature between 20°F and 100°F. 



In other words, the characteristic function for the classical 
logic for the above example is given by  
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The boundary 50 °F is taken because classical logic 
cannot interpret intermediate values. On the other hand, 
fuzzy logic solves the above problem with a membership 
function as given by  
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The above membership function is graphed in Figure 1. 
Demonstrating that the degree of coldness is the 
complement of the degree of hotness.  
 

 
Figure 1: Membership function for the degree of hotness and 

degree of coldness [11] 
  
 Fuzzy state aggregation is a variation of Singh’s soft 
state aggregation [3], which uses probability values as a 
measure of the extent to which the current state falls into 
the various aggregate (cluster) states.  
 Like soft state aggregation, fuzzy state aggregation 
uses a fixed number (K) of aggregate states to represent 
the environment and thus minimize the number states the 
learning algorithm must deal with. Rather than using 
probabilities, a crisp state (s) is represented by its degree 
of simultaneous membership in each of the K fuzzy states. 
The total number of fuzzy states is determined by the 
number of fuzzy sets (labels) used and the number of state 
variables.  
 
2.3 Q-Learning 

In the realm of reinforcement learning, Q-learning 
[12] is one of the simplest and most commonly used 
methods. Q-learning assigns values to state-action pairs 
Q(s,a), and thus implicitly represents a policy. After the 
algorithm selects an action, a, the Q table representing the 
policy is updated based on the rewards received and the 
expected rewards as represented by the Q value of the 
resultant state, s’, according to the function: 

[ ),()','(max),(),( ' asQasQrasQasQ a −++←

where α is the learning rate (or step size), between 0 and 
1, that controls convergence, and γ is the discount factor, 
between 0 and 1, that makes rewards r that are earned 
later exponentially less valuable 

In Q-learning, the agent learns through continuous 
interaction with the environment, during which it exploits 
what it has learned so far. To ensure the agent is not 
missing more valuable state-action pairs, it can also 
explore. In practice, this means that the current 
approximation Q is used to select an action most of the 
time. However, in a small fraction of cases an action is 
selected randomly from the available choices, so as to 
explore and evaluate unseen state/action pairs. 
 
2.4 Combining state aggregation with Q-learning 
 In a domain with a large state-space, it is very 
inefficient to learn separate Q-values for each state-action 
pair. It is therefore, not uncommon to see Q-learning used 
in conjunction with some form of state aggregation. When 
implementing Q-learning with such an architecture, the 
term Q(s,a,r) is used to approximate Q(s,a.) Here r is a 
vector of the learned parameters. The fundamental 
parameter updating rule for each time step t is [4]: 

),,( tttttt rasQrrr Δ+← αδ    (2) 

Where α is the learning rate and δt is the Bellman error 
used for the look-up vector in this corresponding learning 
rule: 

ttt asQasQ αδ+← ),(),(    (3) 

In discounted Q-learning the Bellman error is calculated 
as follows: 

),(),(max)( 1 asQasQtg ttat −+= +γδ  (4) 

Where g(t) is the cost of taking the specific action and γ is 
the discount rate.  
 In this work we have specifically used fuzzy state 
aggregation as the function approximation architecture. 
Using this architecture, the Q-value of action a in state s 
is calculated using: 
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Where q(k) is the Q-value of the kth fuzzy state and μk(s,a) 
is the degree of membership of state s to k with respect to 
action a.  
 Replacing ΔrtQ(st,a,rt) from equation (2) with μk(s,a), 
the equation to update q(k) becomes: 

),()()( askqkq ktKk μαδ+←∀ ∈   (6) 

Otherwise, the Q-learning algorithm remains unchanged. 
 
2.5 Policy Hill Climbing 

]γα  (1) 

Policy Hill Climbing (PHC) is a simple extension of 
Q-learning. The algorithm, performs hill-climbing 
(seeking the highest global reward) in the space of mixed 
policies. Q-values are maintained as an estimate of the 
optimal policy. In addition to the Q-table, the algorithm 



maintains the current mixed policy (policy table). The 
PHC algorithm is shown in Table 1.  
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Table 1:  Basic Policy Hill Climbing 
 

The policy is improved by increasing the 
probability that it selects the highest valued action 
according to a learning rate ]1,0(∈δ . When 1=δ  the 
algorithm is equivalent to Q-learning, since with each step 
the policy moves to the greedy policy, always executing 
the highest valued next step rather than pursuing the 
greatest overall reward. 
 
2.6 Win or Lose Fast (WoLF-PHC) 

The WoLF-PHC [6] algorithm is a hill climber that 
also uses a variable learning rate. The algorithm requires 
two learning parameters . The parameter that is 
used to update the policy depends on whether the agent 
thinks it is currently winning or losing. This 
determination consists of comparing whether the current 
expected value is greater than the current expected value 
of the average policy. If the current expected value is 
lower (i.e., the agent is “losing”), then the larger learning 
rate δ

wl δδ >

l is used, otherwise δw is used. The purpose of using 
the variable learning rate is to increase the speed at which 
the algorithm reaches the optimum policy. The functions 
below are used to calculate δ for the WoLF-PHC 
algorithm, and are the only changes to PHC in Table 1. 
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Table 2: Additional functions for WoLF-PHC 

 
2.7 Policy Dynamics based Win or Lose Fast (PDWoLF) 
 Like WoLF, PDWoLF [7] uses the variable learning 
rate parameters  and . Where WoLF checks itself 
against an average policy to determine if it is winning or 
losing, PDWoLF uses the change in policy from the 

previous time step Δ(s,a) with the change in policy from 
the current time step Δ

lδ wδ

sa, shown below. 
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Table 3: Additional functions used in PDWoLF-PHC 
 

3. Combining PHC and FSA 
 
 The use of state aggregation for function 
approximation with Q-learning is not a new or unusual 
concept [1, 3]. Berenji and Vengerov [4, 5] advanced this 
work in their application of Q-learning and fuzzy state 
aggregation. We have built upon their work by beginning 
with fuzzy state aggregation and a basic Q-learning 
algorithm and extending that to the application of PHC 
algorithms. With the state-space constrained to K total 
fuzzy states, we applied three different variants of a 
Policy Hill Climbing algorithm; standard PHC, Win or 
Lose Fast (WoLF) PHC and Policy Dynamics (PD) 
WoLF-PHC. Our implementation of these algorithms uses 
two vectors to represent the learned parameter data. The 
q-vector q(k) as described previously and a policy vector 
π(k). 
 The q-vector holds the expected reward over time 
which is iteratively updated using a common temporal-
difference formula. The π-vector holds the probabilities 
used to select an action from a given state (the policy). 
The policy decision of which action to take next is then 
based on both the expected reward value (q) and the 
policy value (π ): 
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The vectors q(k) and π(k) are initialized as shown below: 
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where A is the number of possible actions in the domain. 
The reason for initializing π(k) this way may not be 
intuitively obvious. Since we are using 3 fuzzy labels, the 
initial value of each element of μk(s,a) is 1/3 before 
learning begins. The elements of π(k) are initialized so 
that  
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Normalizing it with a Boltzmann distribution to ensure 
equation (9) remains true, the π-vector is updated as 
follows: 
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with Δsa calculated as: 
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In this application δ is set in the range (0,1]. 
 Because our intent is to use Δsa to update the entire 
summation 
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for a given action a the division used in equation (10) is 
necessary to scale and weight Δsa correctly and prevent it 
from causing disproportionate growth in the elements of  
π(k). 
 
3.1 Combining WoLF-PHC and Fuzzy State Aggregation 
 Unlike the standard PHC algorithm, the WoLF-PHC 
and PDWoLF-PHC both utilize a dynamic learning rate to 
increase the speed of convergence over the standard PHC. 
 The WoLF-PHC algorithm uses an additional vector 
to estimate the average policy value. The average policy 
vector is initialized like the π-vector: 

AK
labelsfuzzyofnok .)( ←π    (14) 

This vector is updated by 
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where C is a counting function used to track how many 
times the elements representing a state have been updated. 
In this implementation all state elements for the selected 
action are updated simultaneously, so C is simply the 
number of times the algorithm has looped. 
 The delta selection for determining the learning rate 
in WoLF is then calculated as follows: 
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where δl>δw and both fall within the range (0,1]. This 
value for δ is used to calculate Δsa as described in 
equation (10) and is derived from the δ calculation of 
WoLF in equation 16.  
 
3.2 Applying PDWoLF to the FSA 
 The PDWoLF-PHC also uses additional values to 
change the learning rate. These are initialized as 
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Where ∆ and ∆2 are changing rates within the policy and 
are estimates of the slopes of the decision space. These 
are respectively updated for the selected action as 
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The delta selection then becomes 
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4. The Experimental Domain 
 
 Our version of tile world was designed as a test-bed 
for machine learning methods to be used in the very 
stochastic world of robot soccer. Specifically, we focus on 
the learning process for an agent with the ball to decide 
which team mate to pass it to, and for the team mates to 
decide where to move to best facilitate moving the ball 
towards the goal.  
 The domain for this experiment is the modified 
TileWorld domain [8] used by Berenji and Vengerov 
[4,5]. It consists of a 20 x 20 grid world which contains 5 
reward opportunities and 5 deformations. The reward 
opportunities each have random value of 20 to 100 points 
and a random life span of 5 to 15 time steps. Anytime the 
agent reaches a reward or the reward expires, it disappears 
from the domain and another one is generated elsewhere 
on the board. Agent can move 1 step each time step. 
 Each deformation has a random penalty value of -5 to 
-20 points and, unlike the rewards, these deformations 
occasionally drift. At each time step each deformation has 
a 10% chance of moving one square in a random 
direction. Each deformation is also the center of a 
potential field that radiates out based on the following 
equation:  
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Where v is the value of the deformation and d is the 
distance from the deformation. The cost of each square in 
the domain is the sum of the effects of each potential field 
at that point. 
 Each state in the domain is represented by 4 state 
variables: 

1. Distance to the reward 
2. Value of the reward 
3. Estimated life expectancy of the reward  
4. Roughness of path to the reward 

 The distance to the reward is calculated simply using 
the Pythagorean Theorem. The value of each reward 
randomly determined at the time it is generated. The 
estimated life expectancy of a reward (L) is calculated by 
 
L=m-t(r)     (20) 
 
where m is the mean life span (m=10 in this example) and 
t(r) is the number of time steps that reward r has existed. 



The roughness of the path to the reward is calculated by 
constructing a rectangle with the agent and the reward at 
opposite corners. The roughness is the average cost of all 
the squares in that rectangle. 
 At each time step the agent must decide which of the 
reward opportunities to pursue. This decision is based on 
the state variables described above. 
 Once the decision is made, the agent moves one 
square towards that opportunity, the policy is updated and 
the process repeats.  
 Because the agent can move in any of eight directions 
(orthogonally or diagonally) there are always three 
contiguous squares that the agent can choose from to 
move towards the selected reward. At each time step the 
agent simply uses the square with the lowest cost. 
  With each step, the agent garners a negative reward 
equivalent to the cost of the square it moves to. The agent 
only receives a positive reward upon reaching a reward 
opportunity before it expires.  
 The function μk(s,a) in equations 5-7, 9, 10, 12, 13, 
16 and 18 is the degree of membership of state s to k with 
respect to action a. The value of each of the state 
variables is described by 3 fuzzy labels (Small, Medium 
and Large). The shapes of these fuzzy labels are shown in 
figure 2.  
 For each of the state variables, the fuzzy labels are 
assigned so that they evenly divide the range of possible 
values for the variable. The degree to which the agent is 
in one of the fuzzy states is the mean of the degrees to 
which all the state variables belong to the corresponding 

 
Figure 2: Fuzzy labels used by the agent 

 
labels in the fuzzy state. In this experiment we have used 
4 state variables and 3 fuzzy labels resulting in 81 (34) 
total fuzzy states. For comparison purposes, without fuzzy 
state aggregation, this same domain would have 210 
possible distance values, 80 possible reward values, 15 
different life expectancy values and at least 1000 different 
roughness values resulting in 2.52x109 possible states. By 
limiting the state variable values to only integer values 
(which is not the case in our experiment) this number 
could be reduced to just over 320,000 states.  
 At the beginning of each experiment the Q-values are 
all set to 20. This number is selected because it is 
comparable to the maximum Q-values found at the end of 
the experiment and starting with this value results in some 

natural exploration in the earliest stages of learning. 
Because the entire q(k) vector and π(k) vector are updated 
at each time step, learning occurs very quickly and no 
dedicated exploration is required. 
 
5. Experimental Results 
 Our experiments were conducted by running multiple 
games of 200 time-steps each. The q and π-vectors were 
reinitialized at the beginning of each game and the same 
number of games was run for each algorithm. The 
parameter settings are α=0.1, γ=0.3, and δ=0.5. 
Experience shows that the ratio of γ/α=3 works well in 
most situations. Increasing the value of α only resulted in 
a larger magnitude of Q values, but with no corresponding 
increase in performance. Figure 3 shows the averaged 
results of running 2000 games with just an on-policy Q-
learning algorithm compared to the basic off-policy hill 
climbing algorithm. The results of multiple games are 
averaged due to the highly stochastic nature of the 
domain. 
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Figure 3: Results of PHC vs. on-Policy Q-Learning 
 
 Figure 4 shows results comparing WoLF-PHC and 
PDWoLF-PHC algorithms to determine if the application 
of a variable learning rate could improve performance. 
For these algorithms we used the following parameter 
settings: α=0.1, γ=0.3, δ=0.5, δw=0.2,and δl=0.8. These 
values were chosen for δl and δw based on Bowling and 
Veloso’s [6] finding that δl/δw=4 is a good ratio for using 
WoLF in stochastic environments.  



 
Figure 4: Results of PHC, WoLF and PDWoLF 

 
Our efforts indicate that all three PHC algorithms 
consistently provide similar results, despite varying the 
values of each of these variables.  
 The generalization of the crisp states into a fuzzy 
state approximation vector smoothes the landscape of the 
policy table to an extent that the use of the variable 
learning rate has little effect. The use of the variable 
learning rate in more chaotic policy landscapes is the key 
to the improved performance previously demonstrated by 
the WoLF-PHC and PDWoLF-PHC algorithms. 
 
6. Conclusion and Future Work 
 This work demonstrates the improvement of 
combining fuzzy state aggregation (FSA) with each of 
three different PHC algorithms over standard Q-Learning. 
Both in terms of speed to convergence and the 
convergence value itself. The resulting increase in 
performance clearly shows the benefit of applying the off-
policy hill climbing algorithm to the FSA in this highly 
stochastic environment. Unlike the results of using the 
WoLF-PHC and PDWoLF-PHC algorithms in a crisp 
environment, these two algorithms showed no improved 
performance over the common PHC algorithm. 
 Our future work will include applying this same 
combination to more complex domains in an effort to 
determine if the performance potential of the different 
algorithms maps to the fuzzy set aggregation function 
approximation method. We also plan to explore the 
potential benefit of learning the optimal fuzzy label values 
for each state variable as a means of further improving 
performance. 
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