
Cognitive Robot Mapping with Polylines and an

Absolute Space Representation

Kennard R. Laviers and Gilbert L. Peterson

Department of Electrical and Computer Engineering

School of Engineering and Management

Air Force Institute of Technology

Wright-Patterson, AFB, 45433-7765

[kennard.laviers, gilbert.peterson]@afit.edu

Abstract— Robot mapping even today is one of the most
challenging problems in robot programming. Most successful
methods use some form of occupancy grid to represent a mapped
region. This approach becomes problematic if the robot is
mapping a large environment, the map quickly becomes too
large for processing and storage. Rather than storing the map
as an occupancy grid, our robot (equipped with sonars) sees
the world as a series of connected spaces. These spaces are
initially mapped as an occupancy grid in a room by room
fashion. As the robot leaves a space, denoted by passing through
a doorway, the grids are converted to a polygonal representation.
This polygonal representation is stored as rooms and hallways as
a set of Absolute Space Representations (ASRs) representing the
space connections. Using this representation makes navigation
and localization easier for the robot to process.

I. INTRODUCTION

Learning a map of its environment presents a complex

problem for robots. The problem begins with getting the

robot to move in such a fashion that it explores the entire

environment, insuring a complete map is constructed. While

the robot explores and records real time sensor data, it uses

that data (range and motor data) to form a map of the explored

region. These maps allow the robot to develop a sense of a

place and localize themselves in the world. Memory space

limitations require creative solutions for the representation

of the map itself when mapping large environments. These

maps can take on a number of internal representations from a

grid to a general graph of interconnected spaces; our method

combines the best of both approaches, allowing for greater

efficiency performing planning and localization.

An associated problem to learning the map includes local-

ization of the robot. Accurate localization is a prerequisite

for building a good map and having an accurate map is

essential for good localization. Simultaneous Localization And

Mapping (SLAM) is a critical underlying factor for any

successful mobile robot navigation.

A. Mapping

The representation of the map is a key factor of robot

mapping. Implementations of robot mapping represent map

data as either an occupancy grid [14][2] or a topological

network [12][11][7]. An occupancy grid is a matrix of cells

where cells containing a value greater than 0.0 indicates a

belief that an obstacle resides in space represented by the

cell. Using a matrix in this fashion requires the reservation

of a large amount of memory for representing the entire

maximum map size. A topological map is one in which

objects are stored with respect to each other based on a robot

centric point of view. This representation makes it easy to

use memory only as needed, generating more efficient maps,

but introduces implementation difficulties and cannot easily

convert to human-understandable maps.

Much like a graph with nodes and edges as paths between

locations, our method represents the map as a set of line

segments or polylines. This data representation significantly

reduces the size of the data structure. This representation also

lends itself to faster path planning and a more human centric

representation. However, generating the polygonal representa-

tion with sonars is difficult since the noise generated by the

sonars significantly complicates the process.

To overcome the issue of sonar noise, we start by creating

a histogram map or occupancy grid from the sonar input/data.

Using a new technique of filtering the data in the histogram,

which reduces the histogram wall thickness to one, the data

is cleaned and then converted to a list of vertices using the

Douglas Peucker line reduction algorithm [5]. The remaining

set of lines represents the original map of the room. These

lines, along with other topological information, are stored in

an Absolute Space Representation (ASR) data structure and

used later to form a complete map. This process repeats for

each room or space visited.

B. Localization

Localization is the process of correcting errors in the robots

dead reckoning system, the sensors that measure detailed

movement of the robots. There are broad categories of lo-

calization: local and global. Local techniques compensate for

odometer errors and require that the initial location of the

robot is approximately known. Global techniques can localize

a robot without any prior knowledge about its position; and

they can handle the kidnapped robot problem, where a robot is

kidnapped and carried to some unknown location. Obviously,

global localization techniques are stronger than local ones

and can deal with situations in which the robot is likely to

experience serious positioning errors [15]. While our system

is being extended to perform localization, it is not a part of

this discussion.

In the next section we cover key areas of research that are

building blocks in our work. In section IIa, we explore obstacle

mapping, and focus on Borenstein and Koren’s technique [2]

and how we extend it in our work. In IIb, some cognitive

representations of the robot maps are discussed with the focus

on the use of ASRs. Section III shows the development of

these idea into an implementation. Results of simulated and

real world mapping are shown in section IV. Finally, future

work and extensions are discussed in section V.

II. RELATED WORK

The goal of robot mapping is to build a useful map and

provide a solid method for the robot to identify and avoid

obstacles in its path, and if revisiting a location to recognize

that fact. While the robot explores the environment, it records

data readings from sensors and stores that data for this

purpose. In the following subsections we discuss the two main

approaches of maintaining and representing this information.

In section IIa, we explore obstacle mapping and how it relates

to our work. Section IIb covers cognitive mapping used with

polylines space/room fragmentation.

A. Occupancy Grid

One of the most straight forward methods of representing

a map has been the occupancy grid [14]. In this method, the

world is represented as a two dimensional array of probability

information about the occupancy of a grid cell. Using informa-

tion from the robot’s range sensors and pose information, an

array cell is updated with new probability information after

each sensing action [14]. Borenstein and Koren extend the

occupancy grid map idea allowing for faster processing and

making it possible for use in real time obstacle avoidance and

robot navigation by approximating the probability values [2].

Borenstein and Koren’s approach, Histogram In Motion

Mapping (HIMM) [2], represents obstacle data in a two

dimensional array denoted as C. When a sonar indicates a

reading for a specific cell Cxy in the array, Cxy is modified so

that C′

xy ← Cxy +3 and all its surrounding cells (x±1)(y±1)
are incremented by 1.5. All cell values in C are limited so

that 0 ≤ C′

xy ≤ 15. Additionally, cells along the path from

the robot center point (x0, y0) to (x, y) denoted as Cij are

decreased by 1. Notice that it assumes a higher belief that

a cell is occupied than not occupied. This simple method of

building a map demands little processor time and memory

space, so is quickly processed by a computer.

Borenstein and Koren also introduce the idea of using a

polar histogram for obstacle avoidance [3]. Within a predeter-

mined window around the robot, a polar sweep is made in 5◦

increments. The angle β of the current point (i, j) with respect

to the vehicle center point (x0, y0), is determined by,

βi,j = arctan

(

j − y0

i− x0

)

(1)

For each cell (i, j), magnitude is calculated by,

mij = C2
i,j ∗ s (2)

and s is set so that the value within Cij is scaled where the

closer it is to the robot the higher the value it is assigned, and

the farther away, the less weight it is given. For each cone φ,

cells are summed to determine a magnitude vector ~kφ.

~kφ ←
∑

ij

mij (3)

Determination of which cone point (i, j) belongs to is accom-

plished by finding βij , where φ − 1 < βij ≤ φ indicates

point (i, j) ∈ the cone from (φ− 1, φ]. The robot explores in

the direction of lower values of ~k. An advantage of HIMM

is its ability to progressively adapt the strength of an obstacle

avoidance reaction to the level of evidence for the existence of

an obstacle, and do so quickly. By using this technique which

is computationally cheap, we free up processor time for use

in the cognitive conversion process while providing obstacle

avoidance.

Another popular approach to mapping, known as Expec-

tation Maximization (EM)[6], holds probabilistic information

about the world and constructs the most likely map from it.

B. Cognitive Mapping

Using a simple occupancy grid presents several problems.

Of these problems, the amount of memory needed to represent

a large area is of primary concern. For example, if the grid

resolution is 10 centimeter by 10 centimeter cells, mapping a

100× 100 meter area requires (100 × 100)× (100 × 100)×
16bytes = 1.53GB of memory space.

Cognitive mapping with the use of ASRs is a topological

mapping approach. That is, the world is represented more from

the perspective of the robot and in some cases maintains very

little metric information about the world. Instead, the map is

created with consideration to where the ASRs are with respect

to each other and the robot.

1) Absolute Space Representation: An Absolute Space

Representation or ASR [7], is a cognitive mapping technique

used to build models of rooms or spaces visited. Absolute

space comes from the idea that the representation for each

space should be independent of all other spaces. Also, humans

view the world cognitively and so should our robots.

Rooms are separated by access points, represented as edges

connecting nodes. This technique is explained by Hill, Han,

and Lent [7]. While the idea of the ASR [7] has a foundation

with three dimensional image based localization and mapping

(much like VSLAM [15]), it is also applicable with respect to

indoor mapping using ultrasonic sonars as the range device [8].

Figure 1 shows a standard Cartesian map translated to an

ASR. Notice the rooms become nodes and the exits become

edges connecting the nodes. The use of ASRs becomes more

necessary as the size of the mapped environment increases.

By placing non-current ASR data in persistent storage, the

robot must only hold a limited amount of information in main

memory at any given time. Additionally, when the robot uses

Fig. 1. Two Room ASR Example

the cognitive map at a later time, it need only know which ASR

it currently occupies and have only the data for that ASR, and

its neighboring ASRs loaded into memory.

Jeffries and Yeap [12] expand this theory of cognitive maps

which at its core has the notion of an autonomous agent

building a map in the memory, i.e. a map in the head termed

a cognitive map, for the places it visits. The agent must

first develop a representation for each space visited [19][18].

The space occupied by the robot, termed the local space,

is defined as the region which the robot perceives enclosing

it (a room; hall, etc). The robot’s cognitive map grows as

the representation of each local space it visits is added to a

topological network or graph of ASRs. They show how this

theory is applied to the problem of an autonomous mobile

robot equipped with sonar sensors, building a map from its

experience of the places it has visited [12]. In this case the

cognitive map consists of a local space representation for

each local space visited with connections to other rooms

that have been experienced as neighbors. All local space

representations have their own local coordinate systems and

are independent of all others. Our approach builds on this

method by applying the use of polylines to the representation

of the ASR. This enhances our ability to use the ASR for

navigation and localization.

2) Polyline Simplification: Most implementations of robot

mapping represent map data as some form of occupancy grid

or topological network. Our approach merges the two ideas.

We maintain world data by transforming a temporary grid

to a set of lines and structuring those lines in a topological

network. The size of the data structure is significantly smaller

using polylines instead of a grid, and using the data for path

planning and localization becomes much faster as the search

space is reduced. Using a polygonal representation with sonars

has been previously considered infeasible [9] as the amount of

noise generated by the sonars complicates the process greatly.

Latombe and Banos [9] use polylines with the help of a laser

range finder, instead of sonars. The vehicle moves from point

to point and performs a polar sweep at each point. Each

new polar sweep is added to the current model. Lines are

extracted from the raw range data using a polar line fitting

algorithm. Using sonars necessitates the need for developing

a new method of fitting range data to lines. We extend their

system by developing a new data fitting method and storing

the data in a cognitive map for use in later localization and

navigation.

(a) (b)

(c) (d)

Fig. 2. Complete polyline process. The raw map is shown in a (50X50=2500
integer matrix) (a). followed by the cleaned map(50X50 integer matrix)
(b). Figure (c) is the raw polyline (250X2=500 integers). Finally (d) is the
simplified fitted polyline (9X2=18 integers).

III. IMPLEMENTATION

Our system is comprised of several distinct algorithms. At

the highest level, the system consists of the robot traveling

around its environment creating a HIMM map. Each time the

robot detects that it leaves a room (enclosed area), it creates a

complete polygonal map of the previous room and saves that

map to the hard drive as ASR to cartesian map information.

A new map is started and the process begins again in the new

room.

Creating a map of a room is a multistage process. It

begins by cleaning the HIMM map (Fig. 2a) leaving walls

represented by no more than one cell thick lines in the grid

(Fig. 2b). Next, an extraction algorithm is called to create

an ordered list of vertices (Fig. 2c) using a nearest neighbor,

follow-and-remove process. Using the new list of vertices, a

final representation (Fig. 2d) is generated using vertex and

edge reduction algorithms. Exit and entry locations are stored

for later use as pivot points for rotational adjustments to

compensate for localization errors. Finally, the robot combines

all the ASRs to create a human readable master map.

A. ASR Construction

When the robot completes the mapping of one room/space

it constructs an ASR from the HIMM map. This construction

involves taking the raw HIMM map, cleaning it, and convert-

ing it to a cognitive map. Next, the robot adds the map to the

ASR container. We break this process up into the sequence of

steps which consist of

1) cleaning the raw HIMM,

2) creating an ordered list of vertices by extracting points,

3) eliminating points that are close together,

4) reducing the number of edges,

5) calculating a reference point used later when all the

ASRs are put back together,

(a) (b)

Fig. 3. A HIMM before (a) and after (b) applying the HIMM cleaning
algorithm. The line inside the room represents the path of the robot.

Fig. 4. Any occupied cell not able to draw a ray to the path that the robot
traveled without going through another occupied is discounted as noise.

6) and finally adding the new ASR to the ASR container.

B. Clean Map Algorithm

From the HIMM built occupancy grid map, our cleanup

algorithm incorporates some modifications of the original

mapping technique provided by [2]. In their paper, empty

cells empty(Cxy) are decreased by -1 but not allowed to

drop below 0. To increase the difference between occupied

and unoccupied, the lower bound of C is decreased so that

empty(Cxy) ≥ −3 allowing us to distinguish between an

unexplored region and an empty region. More importantly,

spaces occupied by the robot itself are marked as robotpath for

use in the map cleaning algorithm. This is shown in (Fig. 3a)

and the modified map demonstrates a cleanly mapped region

inside the empty space and messy area in the unexplored

region (Fig. 3). The cleaning process is straight forward; any

cell deemed empty or occupied is checked to see if a ray

from it to the path of the robot is possible. If the ray traverses

occupied cells then it is set to an unexplored or unknown state

(Fig. 4).

We represent the map to be cleaned as a matrix H where

Hx,y is a specific position of the map. The final filtered map

is H ′. Let maxdist be the maximum effective range of the

sonars. Part of our algorithm requires creating a ray from

every point (x, y) where Hx,y > 0 to x ± maxdist, y ±
maxdist. All line functions use Bresenham’s line algorithm

[4] for efficiency. To represent the line algorithm, we define

Γ(pa, pb, {start, next}) which returns points along the line

from pa to pb. Finally, ε is a threshold value where Hx,y > ε

is considered occupied.

C. Point Extraction Algorithm

One of the big challenges in this work is taking point data

from the two dimensional array and turning it into a list

CleanMap(H)
For (every point (x, y) of H)

If(Hx,y > ε)
pa ← (x, y)
found ← false
For (−maxdist to +maxdist as j)

For (−maxdist to +maxdist as i)
pb ← ((x + i), (y + j))
pt ← Γ(pa, pb, start)
While (pt 6= pb)

pt ← Γ(pt, pb, next)
If(Hpt = robotpath)

found ← true
H ′

pa
← Hpa

Break While loop
If(Hpa > ε)

Break While loop
If (found)

Break For loop
If (found)

Break For loop
End For
H ← H ′

Fig. 5. Algorithm to clean a modified HIMM map

ExtractPoints(V, H)
For (0 to |Hy| as j)

For (0 to |Hx| as i)
If (Hi, j > ε)

ps ← (i, j)
pe ← ps

j ← |Hy|
i← |Hx|

DO
V ← V ∪ {ps}
Hpsx ,psy

← 0
ps ← Next closest occupied cell
If (∆(ps, pe) > γ))

Mark point this as the end of a polyline
pe ← ps

UNTIL (|H | = 0)

Fig. 6. ExtractPoints

of organized points. The points must be retrieved in such a

fashion that they form cohesive polylines. A point Hx,y > ε

is added to V starting from point ps and ending at pe.

While retrieving points on the map it is important to identify

where one polyline ends and another begins. To do this we

define a threshold γ that is the maximum allowable distance

between two cells containing no occupied spaces.

In general, the algorithm retrieves points by following

occupied cells, adding the point to V and removing it from H

until |H | = 0. This algorithm is detailed in (Fig. 6).

D. Edge Simplification Algorithm (Douglas-Peucker)

Before we perform any edge simplification, it is important

to reduce unnecessary vertices first. The process of simplifying

the list of vertices V extracted from the map begins by

eliminating clusters of closely grouped points. A tolerance

Fig. 7. Line fitting before and after.

value τ is defined such that for any point Vi, if ∆(Vi,Vi+m) <

τ for m = {i, i + 1, i + 2, i + 3, ...n}, then Vi+m is removed

from V. When ∆(Vi,Vi+m) > τ then i is set i← i + m.

The Douglas-Peucker algorithm [5] uses the closeness of

a vertex to an edge segment as judgment criterion for elim-

ination. It starts with a crude initial guess at a simplified

polyline, i.e. the single edge joining the first and last vertices

of the polyline. The remaining vertices are tested for closeness

to that edge. If these vertices are further than a specified

tolerance from the edge, then the furthest vertex from it is

added to the simplification. This process creates a new guess

for the simplified polyline. Applying this process recursively

for each edge until all vertices of the original polyline are

within tolerance of the simplification yields the final simplified

set of edges.

E. Line Fitting

The final step of the process involves using vertices returned

by the Douglas-Peucker algorithm as end points to fit a linear

regression line [13] of the form y = b0 + b1x using the least

squares method where

b1 =
n

∑n

i=1
xiyi − (

∑n

i=1
xi) (

∑n

i=1
yi)

n
∑n

i=1
x2

i − (
∑n

i=1
xi)

2
(4)

b0 = ȳ − b1x̄ (5)

Letting x̄ and ȳ be the averages of the x and y points

respectively.

Pearson’s correlation coefficient ρ̂ is calculated to determine

line suitability for a linear fit and if not, reject the fitted line.

The coefficient ρ̂ is represented as:

ρ̂ =
n

∑

xy −
∑

x
∑

y
√

(

n
∑

x2 − (
∑

x)2
)(

n
∑

y2 − (
∑

y)2
)

(6)

A line with ρ̂ < |.9| where −1 < ρ̂ < 1, is classified

as a bad correlation in our implementation. The Douglas-

Peucker algorithm restricts this from allowing small noise data

to produce large errors in the output map (Fig. 7) requiring

this extra fitting process.

IV. RESULTS

The first series of tests included running the system using

the Pioneer robot simulator. The map in (Fig. 8a) shows a

map that included 9 ASRs and those rooms represented as

a graph (Fig. 8b). In (Fig. 9) an example ASR before and

after conversion to its simplified polygonal representation,

(a)

(b)

Fig. 8. ASR’s Represented as a Graph. The actual map is shown in (a). The
graph (b) shows how the rooms that were mapped translates to a graph.

(a) (b)

Fig. 9. A 2 Room ASR Example showing the polygonal representation (b)
of the original HIMM map (a). This figure is rooms 5 and 6 of (Fig. 8a)

mapped from rooms 5 and 6 of (Fig. 8a). The polygon requires

less than 100Bytes, while the HIMM used 42KBytes for

representing the rooms. Cell size in all results is 10cm×10cm.

Additionally, thresholds are set:

1) ε← 7,

2) τ ← 2,

3) and γ ← 4.

Using the system in a real world area produced better results.

We show in (Fig. 10) a mapping of the first floor of the

engineering building at the Air Force Institute of Technology

minus some offices with dimensions approximately (255′ ×
255′). On the left (Fig. 10a), illustrates the original polyline

map generated by the system without any localization correc-

tion. On the right (Fig. 10b), the polyline before rotational

localization errors are manually corrected and (Fig. 10c) is

the map after the correction is made.

V. FUTURE WORK AND CONCLUSION

While many methods exist for robots to map their en-

vironment [2][8][14][12][17], as the size of these environ-

ments increases, methods using an occupancy grid start to

approach maximum constraints [2][14][17]. Overcoming these

constraints remains a challenge even today in computer

science. Our two fold method (polylines and ASRs using

sonars) [2][9][12] combines the best of two robot mapping

philosophies. Our system makes it possible for a robot armed

only with sonars to map an arbitrarily large area. It is size

scalable, with a non-increasing computational time required

to map and a linearly increasing computational time required

to reconstruct the ASRs after completion of mapping.

The cognitive mapping process allows robots to easily im-

plement corrections to localization errors using the simplified

ASRs instead of grid data. In (Fig. 10), a before and after map

is shown with a memory footprint of what the map should

look like. Additionally, we plan to reduce the ASR size to

a fixed size of 3Kmm allowing the robot to perform iterative

localization using an expectation maximization algorithm sim-

ilar to Thrun [17], matching the current array window of the

robot with the previous ASRs to determine the more probable

current pose. This idea is taken from work developed by

Schultz and William [16], where range sensor data is divided

up into several time slices and comparing them to determine

an estimate of pose error. Our idea is to extend this technique

to ASRs, fixing the size of the ASR to some small value and

comparing them against each other in a similar fashion. Figure

10b is the polygonal representation of the map in (Fig.10a).

Manually adjusting rotation error among the ASRs yields (Fig.

10c).

ACKNOWLEDGMENT

The authors would like to thank the members of the Air

Force Research Lab for their generous contributions to this

project.

The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the

United States Air Force, Department of Defense, or the U.S.

Government.

REFERENCES

[1] J. Borenstein, B. Everett, and L. Feng, Navigating Mobile Robots:
Systems and Techniques. A. K. Peters, Ltd. Wellesley, MA, 1996.

[2] J. Borenstein and Y. Koren, Histogramic In-Motion Mapping for Mobile
Robot Obstacle Avoidance. IEEE Journal of Robotics and Automation,
Vol. 7, No. 4, pp. 535-539, 1991.

[3] J. Borenstein and Y. Koren, The Vector Field Histogram - Fast Obstacle

Avoidance for Mobile Robots. IEEE Journal of Robotics and Automation,
Vol. 7, No. 4, pp. 278-288, 1991.

[4] N. Cossitt, Introduction to Bresenham’s Line Algorithm Using the SBIT

Instruction. Series 32000 Graphics Note 5, National Semiconductor
Application Note 524, 1988.

[5] D. Douglas and T. Peucker, Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or its Caricature. The
Canadian Cartographer, Vol. 10(2), pp. 112-122, 1973.

[6] S. Thrun, W. Burgard, D. Fox, and F. Dellaert, Robust Monte Carlo

Localization for Mobile Robots. Artificial Intelligence, Vol. 128(1-2): pp.
99-141, 2001.

(a) Array representation (b) Simplified representation

(c) Localization errors fixed at the ASR level.

Fig. 10. The polyline map of the first floor of the engineering building at the
Air Force Institute of Technology. Figure (b) shows the map with localization
errors uncorrected, figure (c) shows the map after rotational localization errors
are fixed. This algorithm is currently being developed and the result in (c) are
simulated.

[7] R. Hill, C. Han, and M. Lent, Applying Perceptually Driven Cognitive
Mapping to Virtual Urban Environments. AI magazine, Vol. 23, 2002.

[8] D. Kortenkamp, Cognitive maps for mobile robots: A representation for

mapping and navigation., PhD Thesis, University of Michigan, 1993.
[9] H. Gonzanos and J. Latombe, Navigation Strategies for Exploring Indoor

Environments. International Journal of Robotics Research, 2001.
[10] M. E. Jefferies and W. K. Yeap, Neural Network Approaches to

Cognitive Mapping. Artificial Neural Networks and Expert Systems,
1995. In Proceedings of the Second New Zealand International Two-
Stream Conference, pp. 75-78, November 1995.

[11] M. E. Jefferies and W. K. Yeap, The Utility of Global Representations

in a Cognitive Map. In Proceedings of the 2001 Conference on Spatial
Information Theory, 2001.

[12] M. E. Jefferies, W. K. Yeap, L. Smith, and D. Fergusen, Building a Map

for Robot Navigation Using a Theory of Cognitive Maps. In Proceedings
of the IASTED International Conference on Artificial Intelligence and
Applications, Marbella, Spain, 2001.

[13] J. S. Milton and J. C. Arnold, "Introduction to Probability and Statistics:
Principles and Applications for Engineering and Computing Sciences".
McGraw-Hill Primis Custom Publishing, 2002.

[14] H. Moravec, Sensor Fusion in Certainty Grids for Mobile Robots. In
Sensor Devices and Systems for Robotics, Springer-Verlag, Nato ASI
Series, pp. 253-276. 1989.

[15] S. Se, D. Lowe, and J. Little, Global Localization using Distinctive

Visual Features . International Conference on Intelligent Robots and
Systems, 2002.

[16] A. C. Schultz and A. William, Continuous Localization Using Evidence

Grids. In proc. of the IEEE International Conference on Robotics and
Automation, Leuven, Belgium, pp.2833-2839, May 16-21, 1998.

[17] S. Thrun, Probabilistic Algorithms in Robotics. AI Magazine, Vol. 21:
pp. 93-109, 2000.

[18] W. K. Yeap, Towards a Computational Theory of Cognitive Maps.
Artificial Intelligence, Vol. 34: 297-360, 1988.

[19] W. K. Yeap and M. E. Jefferies, Computing a Representation of the

Local Environment. Artificial Intelligence, Vol. 107: 265-301, 1999.

