
Chapter 1

TIMELY ROOTKIT DETECTION DURING
LIVE RESPONSE

Daniel Molina, Matthew A. Zimmermann, Gregory R. Roberts, Marnita
T. Eaddie, Gilbert L. Peterson

Abstract The ever evolving nature of the cyber domain presents a unique set of
challenges for today’s forensic analysts. One such challenge comes in the
form of programs called rootkits. These programs attempt to provide
stealth to an attacker by manipulating a computer’s operating system.
The surreptitious environment these programs create increases the level
of difficulty and the time that it takes to perform a computer forensic
investigation.

Current forensic utilities provide limited rootkit detection capabil-
ities. In many cases, an analysts cannot determine the presence of a
rootkit on a system until after a detailed review of all the collected ev-
idence has been done. This research effort seeks to shorten this time
by providing a simple tool that can identify the presence of a rootkit,
during a live response investigation, while minimizing destruction of ev-
idence. This tool provides similar results to those identified by Todd, et
al.[1] for live response investigations. Their research pointed out that,
at the time, there were no tools that performed timely rootkit detection
without sacrificing evidence integrity.

Keywords: Forensic analysis, rootkits, rootkit detection, live response.

1. Introduction
The forensic community has always been concerned with preserving

evidence while avoiding crime scene contamination. The ever changing
nature of computer systems makes this a even big challenge for forensic
investigators. Adding to this is the fact that there are programs that aid
intruders in hiding their tracks on a system. These programs, known as
rootkits, increase the level of difficulty in a forensic investigation in two
ways. First, they prevent certain forensic tools from gathering necessary



2

evidence; secondly, they force investigators to run more intrusive tools
that can alter the current state of the system.

This paper describes a methodology for accurately identifying a rootkit
while minimizing system modification. Studying current rootkits and
their hiding techniques reveals the type of rootkits that are detectable
using a collection of system information gathering tools in user space
and an output correlation algorithm that compares different outputs
and flags discrepancies. The automated analysis tool was tested against
five different rootkits; they were hiding a backdoor’s process identifier
(PID) and a folder containing four files. The rootkits under test were:
Hacker Defender[16], AFX[19], Vanquish[17], FU[18], and FUto[20]. The
backdoor under test was Back Orifice 2000[21].

The first portion of this paper provides background information cat-
egorizing rootkits and describing hiding, and detection techniques. The
latter part of the paper explains the detection approach, tool developed,
test methodology, and test results.

2. Rootkit Taxonomy
A rootkit is a program that allows an attacker unhindered and unde-

tected access to a computer. The term ‘root’ comes from the UNIX world
where root is the highest level of privilege a user can have. Originally
written for UNIX, rootkits have expanded their reach and are now writ-
ten for other operating systems. Rootkits are frequently a collection of
“commonly Trojaned system processes and scripts that automate many
of the actions attackers take when they compromise a system.”[9] Rootk-
its can hide files, network connections, memory addresses, and registry
entries. Rootkits can be embedded in other programs or media similar
to the rootkit found in Sony’s CDs in 2005[5].

In Windows OSs, as in UNIX, rootkits seek the highest privilege level
possible. Windows runs on the Intel x86 architecture, which employs
a memory protection scheme represented using four rings. The layers
are labeled from zero to three; ring 0 has the highest level of privilege
while ring 3 has the lowest. In addition, ring 0 represents the memory
space where the operating system kernel and drivers reside, and ring 3
represents the memory space where user applications reside. In order
for a rootkit to achieve a high level of stealth, the malicious program
must operate at a lower layer (i.e. ring 0) than where rootkit detection
or prevention software operates (i.e. ring 3).

In today’s systems, the lower layers control the upper layers. Rootkit
researchers such as Hoglund[8] and Rutkowska[15] have pointed out that
if a rootkit detector is at a lower layer than a rootkit the detection rate



Molina, Zimmerman, Roberts, Eaddie & Peterson 3

is much higher. On the other hand, if the rootkit executes at a lower
layer than the detector the rootkit’s ability to hide improves dramati-
cally. By going to a lower layer the rootkit can control the information
gathered by the detector which in turn gives the rootkit the ability to
hide malicious data. This research addresses the problem by correlating
the output of multiple system information gathering utilities to deter-
mine if there is enough evidence to expose a rootkit’s presence. The
utilities are executed from user space without prior installation.

2.1 Rootkit Categories
Rootkits fall into one or more of the following categories: kernel, li-

brary, user-level, hardware, and virtualized rootkits. For example, some
rootkits have user-level and kernel-level components. This section ex-
plains the different categories in more detail.

Kernel level rootkits add additional code and/or replace a portion
of kernel code with modified code to allow stealthy control of the
system.

Library rootkits modify system libraries used by user or kernel
applications to achieve stealth[12].

Application level rootkits (user-level) are programs that alter sys-
tem files or binaries on disk[14].

Hardware level rootkits attempt to subvert the system from the
lowest level possible. Although they are very difficult to imple-
ment, the possibility exists as demonstrated by John Heasman [7].
Our research does not attempt to detect this type of rootkit as it
is very difficult to implement and there are no known and available
hardware-based rootkits at the time.

Virtual machine based rootkits(VMBR) attempt to take control
of the virtual machine monitor (VMM) which sits between an OS
and hardware. The rootkit thereby controls requests to hardware
from the upper level. VMBRs modify the boot sequence and load
themselves up instead of the chosen virtual machine monitor or
operating system. After the program is loaded into memory, the
rootkit loads the host operating system as a virtual machine.

A VMBR is difficult to detect during live analysis because forensic
tools are executed from within a VM. In addition, it is difficult to
access the VMBR’s state by software running on the target ma-
chine[3]. From the user’s perspective, once the VMBR is running,



4

the system is in a hidden VMM where malware can exist without
interference. The VMBR becomes the master controller of the sys-
tem with the ability to view/know all keystrokes, network packets,
memory allocations, system events, etc. An example of a VMBR
is SubVirt[3]. The tool developed here does not try to detect this
type of rootkit due to its complexity and lack of availability of a
known VMBR.

2.2 Rootkit Hiding Techniques
Kernel and user level rootkits apply a number of hiding techniques to

achieve their goals, used individually or in combination. Some of these
techniques are:

Patching - This refers to any modification to a binary done stat-
ically or dynamically. Static patching is also used by software
crackers to get around software protection and registration meth-
ods.

Hooking - Hooking is a method used to redirect, or alter, a pro-
gram’s normal flow of execution. This can be done by modifying
a function call in memory. An example of a rootkit that uses this
method is Hacker Defender.

Direct Kernel Object Manipulation - This method takes advantage
of the way Windows schedules processes. It tries to hide processes
by de-linking the malicious process from the doubly linked list
used by the object manager[8]. Examples of rootkits that use this
technique are FU and FUto.

2.3 Rootkit Detection
Rootkit detectors fall under one or more of the following categories

[1].

1 Signature-based: system files are scanned to look for a rootkit
fingerprint

2 Heuristic/behavioral based: checks for deviations from normal sys-
tem behavior

3 Cross-view based: comparing system parameters in at least 2 ways

4 Integrity-based: current snapshot is compared to a known trusted
snapshot



Molina, Zimmerman, Roberts, Eaddie & Peterson 5

5 Hardware-based: hardware detection mechanism that employs di-
rect memory access to acquire memory and scan retrieved data
looking for rootkit fingerprint.

At the time of this writing, software-based rootkit detectors have com-
ponents that execute from user space, kernel space, or from both. The
best detection capability exist if the detector runs below the rootkit. For
example, if the rootkit only executes in user space then the detector has
a better chance of detecting the rootkit from kernel space.

Kernel level rootkits are harder to identify for two reasons; the detec-
tor must coexist with the rootkit in kernel space, or it must be hardware-
based. These approaches are forbidden during live response due to evi-
dence integrity issues.

Some anti-virus programs include rootkit detection features. For ex-
ample, “F-secure Internet Security 2005 has a feature called ‘Manipu-
lation Control’. It is a behavioral blocking mechanism that prevents
malicious processes from manipulating other processes [6].

Some examples of Windows-based rootkit detectors are:

Blacklight by F-Secure: “detects files, folders and processes but not
hidden registry keys”[2]. It offers a removal option for detected
rootkits. This feature, if used, must be executed cautiously to
avoid problems with the system.

RootkitRevealer, detects rootkits by doing a high level scan, from
user space, a raw disk scan, and then comparing the results. For
instance, it reports differences in the Windows registry and file
system by scanning the registry and file system from user and
kernel levels. It does not have any rootkit removal capabilities[2].

IceSword is a suite of tools that includes a process viewer, startup
analyzer, port enumerator, and other tools. It does not identify
the rootkit but leaves task of identification up to user.[2]

Although these are effective rootkit detectors, their main forensic
drawback is that most require installation.

UNIX-based rootkit detectors include the following:

Chkrootkit: a “shell script that checks specific system binaries to
determine if a rootkit has been installed on the system.”[11]

Rkhunter (rootkit hunter) created by Michael Boelen does MD5
hash comparisons of critical system files, looks for known rootkit
files, checks file permissions, looks for suspicious information in
loadable kernel modules, tries to find hidden files, and scans plain
text and binary files for specific strings[13].



6

3. Rootkits and Live Response Analysis
During a live response investigation, analysts must be aware of how

user-level and kernel-level rootkits affect the integrity of the system.
Rootkits running at user-level break the integrity of the system by al-
tering the security subsystem and displaying inaccurate information.
“They intercept system calls and filter output application programming
interfaces (APIs) to hide processes, files, system drivers, network ports,
registry keys and paths, and system services”[4]. Rootkits running at
kernel level, can usurp systems calls, hide processes, hide registry keys,
hide files, and redirect calls to Trojan functions[10]. For this reason,
as part of their analysis, some rootkit detectors check the integrity of
critical OS data structures. Unfortunately, this is a more disruptive task
than what forensic analysts are typically willing to risk in order to get
useful evidence.

Due to the increasing threat of rootkit technology and its potential
impact on computer systems, computer forensics analysis must include
methods for detecting rootkits in a timely manner. Generally, forensic
investigators employ the following methods for rootkit detection: live
analysis tools (i.e. FRED, HELIX), install rootkit detection programs,
or imaging the hard drive for off-line analysis.[1]

Volatile forensic evidence can be destroyed if a computer is turned
off. For live response, information must be carefully collected and doc-
umented by the investigators. However, even if the information is dili-
gently collected, it may be compromised by active rootkits. The integrity
of live response data is therefore directly impacted by rootkits.

Rootkit detection tools can aid the investigator in determining what
rootkits are present and what may have been affected but need to be pre-
installation or installed after the system has been compromised altering
system state dramatically. Even if data is hidden by a rootkit, live
response analysis can either directly find the rootkit or detect suspicious
behavior, letting the investigator know that the rootkit is running.

Once the system is turned off, the rootkit cannot actively hide itself or
other information. An analysis of the image off-line may reveal a rootkits
presence, especially when examining file signatures; however, even if
a rootkit is detected, an examiner may still have difficulty identifying
what the rootkit was hiding or if the rootkit was even running. The
methodology presented in the next section assists the examiner with
this task.



Molina, Zimmerman, Roberts, Eaddie & Peterson 7

4. Automated Analysis
This paper focuses on windows rootkits, and uses available open source

utilities that require no installation to perform a system scan from user
space. These utilities are executed via a batch script that runs each
utility and sends their output to individual files. After the batch script
completes, the output files are parsed by an automated analysis program
that performs the correlation and identification of discrepancies.

While rootkit detection is possible from user-level by identifying dis-
crepancies in the output of command-line utilities, it is advantageous
to automate this process. To help with the automation, a Java-based
Graphical User Interface (GUI) with a file parser is used to generate a
report of the discrepancies. Because the examination utilities are ex-
ecuted from trusted media, it is desirable that the GUI reporting and
parser utility also run from trusted media. The reporting and parsing
utility is able to run from a trusted source by using a Java Runtime
Environment (JRE) located on the trusted media source.

In order to simplify an examiner’s task in detecting rootkits, the
rootkit detector provides the capability of initiating a batch job that
invokes all the command-line utilities and scans the output files for po-
tential threats. This interface demonstrates that the proposed method-
ology for detecting rootkits using only the combined output of user level
utilities is easily automated and is a viable solution to the problem of
locating rootkits in a timely manner in an environment with restricted
privileges.

In order to examine the command-line output for the presence of
rootkits, the utility focuses on two primary methods of identifying po-
tential threats: differences between output files that should display iden-
tical information and combinations of these discrepancies that indicate
possible threats. While it is simple to classify all of the differences be-
tween the outputs, it is difficult to categorize and assess all possible
combinations of these discrepancies according to their potential threat
to a system. Therefore, the utility is restricted to observing only a select
number of key combinations of differences.

To identify the differences, the application scans all output files for
usable system information and correlates that information with the out-
put of other utilities that should generate the same data. A conceptual
diagram is shown in Figure 1. The diagram represents a scenario where
there is a hidden file called “secret.hide”, the goal is to identify its pres-
ence on the system by looking at the output of two directory listings that
are generated using two different tools (i.e. dir and ls). For example, the



8

Figure 1. Discrepancy Identification Example

rootkit detector uses this method to discover files that Vanquish tries to
hide.

In order to achieve proper parsing of the output files, the parser uses a
strictly-formatted parsing scheme to ensure that the proper information
is extracted. This type of scheme assumes that the formatting of the
output files is constant (i.e. one utility always generates a consistently-
formatted output file), this implies that any future additions or version
changes to the command-line utilities require a reexamination of the
output format and possible modification of the parser code.

Once all the discrepancies are identified by the parsing function, the
utility then considers some combination detection rules to determine if
any of the detected differences indicate the presence of a rootkit, Fig-
ure 2 depicts this step in the overall detection process. These detection



Molina, Zimmerman, Roberts, Eaddie & Peterson 9

rules are not all encompassing; rather they serve as a demonstration that
rootkits can be detected when they fail to completely hide themselves
from system users. Also, by considering the meaning of various com-
binations of results indicated by the command-line utilities rootkits are
detectable from user space with minimal system impact.

The diagram depicted in Figure 2 presents a scenario where three dis-
crepancies are being targeted with the goals of determining if they are
related to one another and if they indicate the presence of a rootkit.
In this scenario, the three pieces of information come from earlier com-
parisons of different outputs. For example, Discrepancy A comes from
a comparison between dir and ls.exe, Discrepancy B comes comparing
the outputs of pslist.exe and handle.exe, and Discrepancy C comes from
comparing dir with handle.exe. In the end, all this information goes
through a set of predefined rules which determine if a rootkit is present
or not.

Figure 2. Example of Discrepancy Combinations Used to Detect a Rootkit

5. Results
In order to make the testing process consistent, the victim system is

run on VMWare which allows the flexibility of running malicious code



10

Table 1. Experimental Results
Rootkit Rootkit PID Bo2k PID Bo2k Port Hidden Data

Hacker Defender Found Found Not Found Found

AFX Found Found Not Found Found

Vanquish N/A N/A N/A Found

FU Not Found Found Not Found N/A

FUto Not Found Found Not Found N/A

(i.e. rootkits) without infecting the host operating system. In addition,
it allows a user to halt or start an image quickly and reliably, and go
back to previous snapshots. As mentioned in Section 1.4, the automated
analysis tool targets Windows-based rootkits, more specifically, the OS
under test is Windows XP with Service Pack 2.

Initial tests were performed to determine if the detection approach
would yield useful results. This meant running the batch script and
analyzing the output files one by one in order to determine if there was
any evidence of a rootkit. Surprisingly, there was evidence that indicated
the presence of a rootkit on the system. For instance, the output file
of handle.exe clearly showed a non-existent process with a PID and an
object named Hacker Defender. Similar results were also achieved with
AFX and Vanquish rookit.

After obtaining the aforementioned results, the next step was to per-
form two tests against rootkits that employed more sophisticated hiding
techniques (i.e. kernel level subversion). For this part of the experiment
the rootkits under test were FU and FUto; both hiding BackOrifice’s
PID. During this tests the detector identified BackOrifice’s PID but was
unable to identify FU’s nor FUto’s PID. Notably though, by performing
a directory listing of the folder C:\Windows \Prefetch it was determined
that bo2K.exe and FU.exe had prefetch files that indicated that the two
programs had been executed on the system. This signature could be
added to the rootkit detector but similar to any other signature-based
detector it is easily defeated by renaming the executable. Table 1 shows
a summary of the experimental results. One the most notable result was
the fact that BackOrifice was detected with all the rootkits under test
(user and kernel level). On the other hand, the detector was unable to
locate BackOrifice’s open ports.

6. Conclusion
This article presents an automated utility that identifies a rootkit dur-

ing a live response investigation scenario. The utility effectively identi-
fied rootkit evidence in all of the test cases, some with more accuracy



Molina, Zimmerman, Roberts, Eaddie & Peterson 11

than others. For instance, when testing the detector against Hacker De-
fender, AFX, and Vanquish, the utility identified each rootkit’s PID and
the PID of the backdoor they were hiding as well as the folder that they
were attempting to hide. In the case of FU and FUto with Back Orifice,
the only evidence that pointed to the presence of a rootkit was the name
of the executable FU.exe in the prefetch folder. On the other hand, Back
Orifice’s PID and file name were easily detected even though FU and
FUto were trying to hide that information.

Finally, there are a number of areas this paper does not address and
should be considered in future research efforts. These areas include:
performing an exhaustive examination of the Windows API in order to
identify all the different avenues for determining parallel system informa-
tion (i.e. different ways of gathering network port information), perform
the same type of analysis done in this paper in a UNIX environment,
and perform similar experiments with other rootkits and backdoors.

7. Acknowledgement
This research was sponsored by the Anti-Tamper Software Protection

Initiative Technology Office, Sensors Directorate, of the U.S. Air Force
Research Laboratory. The views expressed in this article are those of
the authors and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the U.S. Government.

References

[1] A. Todd, J. Benson, G. Peterson, T. Franz, M. Stevens and R.
Raines, An Analysis of Forensic Tools in Detecting Rootkits and
Hidden Processes, Proceedings of the Advances in Digital Forensics
III, pp. 89–106, 2007.

[2] Alert, Tech Support, Rootkit Detection and Removal,
(http://www.pcsupportadvisor.com/rootkits.htm), February,
2006.

[3] King, ST and Chen, PM, SubVirt: implementing malware with vir-
tual machines, Proceedings of the Security and Privacy, 2006 IEEE
Symposium on, 2006.

[4] K. Dillard, What are user-mode vs kernel-mode rootkits?,
(www.searchwindowssecurity.com), 2005.

[5] J. Evers, Microsoft Will Wipe Sony’s Rootkit, (www.news.com),
November, 2005.

[6] F-Secure, The Threat - Rootkits, (www.f-secure.com).



12

[7] J. Heasman, Implementing and Detecting a PCI Rootkit,
(http://www.ngssoftware.com), Novemver, 2006.

[8] G. Hougland and J. Butler, Rootkits: Subverting the Windows Ker-
nel, Addison-Wesley Professional, 2005.

[9] C. Prosise and K. Mandia, Incident Response & Computer,
Forensics,McGraw-Hill Osborne Media, 2003,

[10] S. Joel, S. McClure and G. Kurtz, Hacking exposed: network secu-
rity secrets and solutions, Berkley: McGraw Hill, 2001.

[11] J. Levine, B. Culver and H. Owen, A Methodology for Detecting
New Binary Rootkit Exploits, Proceedings of the IEEE SouthEast-
Con 2003.

[12] A. Chuvakin, An Overview of Unix Rootkits, iALERT White Paper,
iDefense Labs, (www.megasecurity.org), February, 2003.

[13] M. Boelen, Rootkit Hunter, (http://www.rootkit.nl/projects/
rootkit hunter.html).

[14] J. Levine, J. Grizzard and H. Owen, Detecting and categorizing
kernel-level rootkits to aid future detection, Proceedings of the IEEE
Security & Privacy Magazine, pp. 24–32, 2006.

[15] J. Rutkowska, Introducing Stealth Malware Taxonomy, Technical
Report, COSENIC Advanced Malware Labs, November, 2006.

[16] Holy Father, Hacker Defender, (www.hxdef.org/download.php),
2005.

[17] Rootkit.com, Vanquish Rootkit, (www.rootkit.com).
[18] Rootkit.com, FU Rootkit, (www.rootkit.com).
[19] Rootkit.com, AFX Rootkit, (www.rootkit.com).
[20] Rootkit.com, FUto Rootkit, (www.rootkit.com).
[21] Sourceforge.net, Back Orifice 2000, (http://bo2k.sourceforge.net).


