
Schrader, K.R., Mullins, B.E., Peterson, G.L., and Mills, R.F., “An FPGA-Based System for Detecting and Tracking Contraband Digital Information Transmitted
Via Peer-to-Peer Protocols,” International Journal of Security and Networks (IJSN), (Accepted: Feb 09, Estimated Publication Date: Fall 2010)

 An FPGA-Based System for Tracking Digital Information Transmitted

Via Peer-to-Peer Protocols

Karl R. Schrader, Barry E. Mullins, Gilbert L. Peterson, and Robert F. Mills
Air Force Institute of Technology

Abstract—At issue for any organization is the illicit

dissemination of sensitive information using file sharing
applications within a network, and tracking terrorist cells or
criminal organizations that are covertly communicating using
Voice over IP (VoIP) applications. This paper presents a field
programmable gate array (FPGA)-based embedded software tool
designed to process file transfers using the BitTorrent peer-to-peer
protocol and VoIP phone calls made using the Session Initiation
Protocol (SIP). The tool searches a network in real time for
selected peer-to-peer control messages using payload analysis and
compares the unique identifier of the file being shared or phone
number being used against a list of known contraband files or
phone numbers. If the identifier is found on the list, the control
packet is added to a log file for later forensic analysis.

Results show that the FPGA tool processes peer-to-peer packets
of interest 92% faster than a software-only configuration and is
99.0% accurate at capturing and processing BitTorrent
Handshake messages under a network traffic load of at least
89.6 Mbps. When SIP is added to the system, the probability of
intercept for BitTorrent Handshake messages remains at 99.0%
and the probability of intercept for SIP control packets is 97.6%
under a network traffic load of at least 89.6 Mbps, demonstrating
that the tool can be expanded to process additional protocols with
minimal impact on overall performance.

Index Terms—P2P, network forensics, BitTorrent, VoIP, packet
analysis.

I. INTRODUCTION
Peer-to-peer (P2P) networking has changed the way users

search for, send, and receive digital information over the
Internet. Instead of relying on interactions with centralized
servers to upload and download digital content, users now share
music, movies, documents, and conversations directly with
other users. While P2P networking provides new and powerful
applications for the legitimate distribution of digital
information, it is also being used for many illicit purposes as
well.

One high-profile illicit use of P2P networking technology is
the intentional or inadvertent distribution of sensitive
government information to unauthorized personnel. In the
summer of 2008, sensitive engineering and communication
documents about the Marine One presidential helicopter were
sent to an Internet Protocol (IP) address in Iran. Upon
investigation by the United States Navy, it was determined that
a defense contractor inadvertently released the documents after
one of the company’s computers was loaded with a file sharing
program, exposing the documents to users worldwide [1].

Another illicit use of P2P networking technology is for the
dissemination of child pornography. The Federal Bureau of
Investigation’s (FBI) Regional Computer Forensics Laboratory
states in its 2007 annual report that “cybercrime, which includes
crimes against children and child pornography, is the offense
for which law enforcement requested assistance most often” [2].
In addition, a 2005 Government Account Office report stated
that “[P2P] technology is increasingly popular for

disseminating child pornography” [3].
Another area in which P2P networking is being used for

illegal activities is covert communication among terrorist cells
through Voice over IP protocols. According to one British
Government official, VoIP calls are “seriously undermining”
MI6’s ability to intercept and track Taliban communications
[4]. In addition, during the December 2008 terrorist attacks in
Mumbai, India, the attackers’ Pakistan-based handlers sent in-
structions, intelligence, and encouragement using VoIP-based
Internet phones [5]. During the 3-day series of attacks, the
terrorists were able to communicate without their calls being
traced or intercepted by authorities.

To help combat these illicit uses for P2P networking, this
research develops a system to identify and track any type of
digital information transmitted on a network using P2P
protocols. Several methods have already been developed to
accomplish this task and are in use today, but they depend on
the use of honeypots to lure targets into downloading
contraband material [6], physical access to the suspected file
sharer’s computer [7], active searching of the Internet for
contraband files to download [8], or active interception and
modification of contraband file sharing requests [9]. All of these
methods are active attempts to discover illicit file sharing, with
the drawback that they can all be detected and possibly
circumvented by file sharers that are aware of their presence. In
contrast, the system developed for this research consists of a
suite of tools that passively detects and tracks illicit file sharing
on a target network without affecting the flow of traffic on the
network, making it impossible for users of the network to
determine the presence of the system.

The developed digital forensic tool, TRacking and Analysis
for Peer-to-Peer (TRAPP) system, allows an investigator or
system administrator to monitor network traffic in real-time for
any digital information that meets the user’s definition of
contraband being shared using P2P protocols. The TRAPP
system (Figure 1) is designed to be set up on the gateway
between an owned network and the Internet. As packets pass
through the gateway, copies are sent to the system for analysis.
For each packet received, TRAPP inspects the packet to
determine if it is a control packet for a P2P protocol of interest.
If the packet is not a P2P control packet, it is discarded. If the
packet is a control packet, the system extracts from the packet’s
payload the unique identifier for the data being shared, and
attempts to match the identifier against a list of files of interest
in the system’s memory. If a match is not made, the packet is
discarded. If a match is made, the control packet is recorded in a
log file for future analysis.

Figure 1. The Proposed TRAPP System

There are three primary goals for this research. The first goal
is to construct a hardware-based system using a field
programmable gate array that analyzes all network traffic sent
to it, detects packets belonging to a specific P2P protocol,
compares the digital information being shared against a list of
interest, and in the case of a match, records selected control
packets from the P2P session in a log file. The second goal is to
optimize the system to increase the probability of detecting and
recording all control packets, even when network traffic is at
nearly the full capacity of the system’s Ethernet controller. The
last goal is to demonstrate the system’s expandability by
modifying it to accept an additional P2P protocol with no
impact on overall performance.

The following section presents related work in the area of
detecting illicit file sharing and background on how the
BitTorrent and SIP protocols work. Section 3 describes the
construction of the research prototype and outlines the
methodology used to design, set up, and conduct the
experiments to test the effectiveness of the TRAPP system.
Section 4 provides a discussion and analysis of the experimental
results. Following this, the conclusions drawn from the
experimental results, the significance of the completed TRAPP
system, and areas for future research are given.

II. BACKGROUND AND RELATED WORK

A. Current Methods of Identifying Downloaders of Illegal

Files
Given the rapid rise of P2P file sharing, law enforcement

agencies and copyright holders are struggling to keep up with
illegal file sharers. Currently, there are several methods
available to these entities to identify and track illegal file
downloaders, several of which are discussed and analyzed
below.

1) Honeypots: One common method of identifying and
tracking uploaders and downloaders of contraband files is
through the use of honeypots. In the context of this discussion, a
honeypot is a trap set by a government entity or private
corporation with the purpose of detecting and tracking illegal
activities. In its most basic execution, a computer is set up on
the Internet with a collection of illegal files. When a computer
attempts to download the illegal files, the downloader’s IP
address, port number, date, time, and the packets being
downloaded are recorded by the honeypot owner. Badonnel et

al. designed and tested a management platform for tracking
illegal file sharers in P2P networks [6].

While effective against illegal downloaders who access the
honeypots, there are several shortcomings to using this method
for identifying and tracking illegal downloaders. First, the
illegal downloader has to access the honeypot. To circumvent
them, blacklists of IP addresses known to host honeypots have
been created. Today, programs such as Peer Guardian are
specifically designed to act as a downloading firewall that
blocks these blacklisted IP addresses, preventing the user’s P2P
software from downloading from them [10]. Second, illegal
downloaders have to locate and actively download from the
honeypot in order for the authorities to identify them. For
certain classes of highly illegal files, such as child pornography,
hard to find and password protected websites are used to keep
the general public (and law enforcement) from accessing and
downloading them [11].

2) The BitTorrent Monitoring System: Another method for
detecting and tracking illegal file downloaders is the BitTorrent
Monitoring System (BTM), designed and presented by Chow et
al. [8]. BTM is a system that automatically searches the Internet
for BitTorrent-based downloadable files, analyzes the files to
determine if they are illegal, attempts to download the suspected
illegal files, and finally records tracking information on who
provided the files for download.

BTM has the potential to become a powerful law
enforcement tool in combating illegal file sharing. However,
there are problems with the system. First, due to the sheer
number of torrent files that are available on most torrent
websites, the BTM system currently suffers from a very slow
processing time. As the number of sublevels covered by the
search algorithm increases, the number of total torrent files to
be analyzed increases exponentially, leading to a drastically
reduced total processing time. Because the BTM system cannot
run in real time, it currently cannot keep up with the constantly
changing peer lists being produced by the tracker sites being
monitored.

3) Hardware Recovery of Illegal Files: Another method of
identifying potential illegal file downloaders is to search the
suspect’s computer for illegally downloaded files using digital
forensic techniques. In their research, Adelstein and Joyce
introduce a digital forensic tool called File Marshal which
allows law enforcement to automatically detect and analyze
P2P software usage on a hard drive [7].

As with the use of honeypots, there are several drawbacks to
the hardware recovery method. First, the investigator must
physically possess the hard drive. In most cases, this requires
some kind of legal action to force a suspect to turn over his
computer to the investigator, which can be an extremely
invasive procedure.

Second, in order to recover a suspect’s hard drive for
analysis, investigators must first determine that the hard drive is
worth analyzing. In other words, investigators must already
suspect the computer as containing illegal files before acting to
confiscate the drive for analysis. This type of investigation is
extremely time and labor intensive, limiting the ability of law
enforcement to tackle widespread illegal file sharing using this
method.

4) The CopyRouter Peer-to-Peer Tracking System: In
October 2008, MSNBC reported that an Australian company,
Brilliant Digital Entertainment Ltd., was marketing a new
Internet monitoring tool known as CopyRouter [9]. The

CopyRouter system inspects every packet entering or leaving a
target network, looks for P2P search results that reference files
that are on a known contraband list (such as child pornography,
the stated primary application of the system), and replaces the
illicit file reference with one that leads the user to a law
enforcement server instead [12].

While the CopyRouter system seems like an effective
contraband tracking system, there are several lingering
questions surrounding its implementation. First, CopyRouter is
a proprietary system, and to date, Brilliant Digital
Entertainment has yet to release any specifications or
experimental data on the system’s speed, effectiveness, or
ability to process all packets at full network speed.

Second, while seemingly effective for P2P systems where
only one uploader is involved, such as Gnutella, the system’s
ability to monitor distributed P2P systems such as BitTorrent is
questionable. As discussed later in this section, as a BitTorrent
client downloads pieces of the file from peers, each piece is
hashed and compared against the .torrent file. If the hashes do
not match, which is always the case when the user downloads
from the law enforcement content server, the piece is simply
discarded.

Finally, CopyRouter is an active detection and tracking
system, meaning that each packet entering or leaving the
network is read and possibly modified before being allowed to
continue through the gateway. One consequence of this is that
the system’s presence can theoretically be detected by users
with enough knowledge of how the system works. These users
can then modify their behavior and simply not use the
monitored network to share illicit information.

B. The BitTorrent Protocol
The P2P protocol of interest is the BitTorrent protocol [13].

BitTorrent differs from other distributed P2P protocols in that it
allows downloaders to download pieces of files from tens or
hundreds of other users simultaneously. To further speedup
downloads, every user that downloads pieces of files also
uploads those pieces he already possesses. By aggregating the
slower upload speeds of hundreds of peers, the protocol can
achieve very high download rates [14].

The key BitTorrent component used in this research is the
info hash of the file dictionary. To create the info hash, the
SHA-1 algorithm [15] is applied to the information dictionary
contained in the .torrent file. The resulting message digest is
labeled as the “file info hash”, which uniquely identifies the file
being offered for download regardless of the file description
contained in the .torrent file. The client provides the file info
hash as the file identifier in the request for a peer list and when
establishing connections using the handshake message. By
comparing this hash against a list of hashes compiled from the
.torrent files of data of interest, we will be able to determine if
the client is attempting to download or upload a file of interest.

In this research, the TRAPP system identifies and analyzes
BitTorrent handshake packets, which are used by BitTorrent’s
Peer Wire Protocol to establish data transfer session between
peers. The system extracts the 20-byte file info hash, identifies
the data being transferred from the handshake packet and
attempts to find a match to the list of interest.

C. The Session Initiation Protocol
In 1999, Henning Schulzrinne submitted the plan for a

protocol to establish and control multiparty multimedia

sessions, and was approved by the IETF as RFC 2543, the
Session Initiation Protocol [16]. According to the updated
version of the protocol, IETF RFC 3261, “SIP is an
application-layer control protocol that can establish, modify,
and terminate multimedia sessions (conferences) such as
Internet telephony calls” [17]. The goal of SIP is not to
exchange data between participants; rather, its purpose is to
allow the participants to find one another, and to manage the
data connection once established. This allows SIP to be used for
a large number of data transfer applications, such as interactive
gaming, media on demand, and voice or video conferencing
[16].

Because SIP is an open source protocol, it is rapidly
becoming the de facto standard for multimedia session control.
SIP is currently used by the popular VoIP provider Vonage
[18], by Microsoft for its MSN Messenger system [16], and by
Yahoo! for its Yahoo! Messenger system [19]. SIP has also
been selected by the 3G community to be its session control
protocol for the 3G cellular network [16], and Google is
planning to incorporate SIP into the protocol used by its popular
Google Talk service [20].

In this research, the TRAPP system identifies and analyzes
SIP INVITE and BYE packets, used to set up and take down
communications sessions, in order to extract the caller and
receiver SIP Uniform Resource Identifiers (URIs). These two
types of packets are also used to determine the beginning and
end of the communication session.

III. THE TRAPP SYSTEM APPARATUS AND TESTING
METHODOLOGY

The objective of this research is to develop a system to
identify and track specific digital information being transmitted
on a network using P2P protocols. The proposed system will
detect P2P transmissions on a target network, classify them by
specific P2P protocol, compare the digital file being transmitted
against a list of interest, and identify the sender and recipient by
IP address.

The goals of this research are to:
• Construct an FPGA-based system that analyzes traffic on a

network, detects a selected P2P protocol, compares the
digital information being shared against a list of interest,
and in the case of a match, records selected control packets
(“packets of interest”) from the P2P session in a log file.

• Optimize the system such that it is able to detect and record
all packets of interest on the network, even under a heavy
(approximately 90 percent utilization) non-P2P traffic load.

• Modify the system to detect and record control packets of
interest belonging to a second P2P protocol with no
negative impact on overall performance.

A. Approach
The forensic tool is designed using the Virtex II Pro FPGA

development board [21] and for the BitTorrent P2P protocol.
Implementing the system on an FPGA allows the software
application to directly access the Ethernet controller buffers,
bypassing the rest of the network stack and increasing the
system’s simplicity and speed. Once the system is optimized
and tested using this protocol, the system is expanded to also
process the Session Initiation Protocol, and tested again.

Figure 2 shows the overall functionality of the design. When
the system processes a packet, the following occurs:

1) The tool fingerprints the frame received from the network

by extracting the first 32 bits of the frame’s payload.
2) The 32-bit fingerprint is then compared to the first 32 bits

of a BitTorrent Handshake message, which is
0x13426974 [22], a SIP INVITE message, which is the
ASCII string “INVI”, or a SIP BYE message, which is
the ASCII string “BYE ” [17].

3) If the fingerprint of the frame’s payload is not a match to
any of these strings, the frame is discarded.

4) If the fingerprint matches that of a BitTorrent Handshake
message, the first 32 bits of the Handshake’s file info hash
is extracted from the frame, and compared against a list of
hashes belonging to files of interest using a binary search.

5) If the fingerprint matches that of a SIP message, the first
12 characters of the TO and FROM SIP URIs are
extracted from the frame, and each is compared against a
separate list of SIP URIs of interest using a binary search.

6) If the file info hash/SIP URI is not on the list, the frame is
dropped.

7) If the file info hash/SIP URI is on the list, the frame is
saved in a Wireshark-readable log file and placed on a
compact flash card. The frames recorded in the log file are
later analyzed to extract IP address information, which
can then be used to perform tracking and forensic analysis.

Figure 2. Packet Data Flow through the TRAPP System

This research is divided into two experiments: finding a

software configuration for the system that processes BitTorrent
packets of interest as quickly as possible and expanding the
system to incorporate the SIP protocol without sacrificing
overall performance. Each of the two experiments is comprised
of three tests: calculating packet processing time, calculating
probability of packet intercept under a non-P2P workload, and
calculating probability of packet intercept under an all-P2P
workload. Overviews of the two experiments are outlined

below.
1) Experiment 1: Finding an Optimal Software

Configuration: The first experiment seeks to determine the
optimal hardware/software configuration of the system that
processes BitTorrent packets of interest as quickly and as
accurately as possible. This experiment is split into three parts.
First, each hardware/software configuration is tested against
several types of packet sizes and formats, and the amount of
processor time needed to process each packet is examined.
Second, a series of BitTorrent packets of interest are sent to
each configuration in a high non-P2P network utilization
environment, and the overall probability of intercept of a packet
of interest is calculated for each configuration. Finally, a series
of BitTorrent packets is sent to the system at near-full network
utilization in order to determine the probability of intercepting
consecutive packets of interest.

2) Experiment 2: Expanding the Forensic Tool to
Incorporate VoIP Functionality: The second experiment seeks
to determine if adding functionality to process SIP packets, in
addition to BitTorrent packets, degrades overall system
performance. For this experiment, the optimal configuration
found in the first experiment is modified to also include
detection and processing of SIP packets of interest. As with the
first experiment, this experiment consists of three parts. First,
the modified configuration is tested against several types of
BitTorrent and SIP packets, and the amount of time needed to
process each packet is examined. Second, a series of BitTorrent
and SIP packets of interest are sent to the modified
configuration in a high network utilization environment, and the
probability of intercept of each type of packet of interest is
calculated. The results of this experiment are then compared
against the results of the first experiment to determine if the
system’s overall performance in processing BitTorrent packets
of interest is negatively impacted. Finally, a series of P2P
packets is sent to the system at near-full network utilization in
order to determine a measure of the probability of intercepting
consecutive packets of interest for each P2P protocol.

B. System Boundaries
The System Under Test (SUT) for this research is the TRAPP

Forensic Tool System. A block diagram of the SUT is shown in
Figure 3. It consists of the following FPGA components: the
TRAPP software, the Power PC processor, the system clock, the
Ethernet controller, the compact flash card controller, and the
RS232 controller. The Component Under Test (CUT) is the
TRAPP software. Specifically, various modifications to the
software execution flow will be compared to the baseline
software architecture.

The performance metrics of the system consist of the time
required to process a packet and the probability of successful
intercept of a packet. The system parameters consist of the size
of the list of interest used by the system, network speed, the
software configuration of the TRAPP system, and the number
and types of P2P protocols supported by the system. Workload
parameters include the type of BitTorrent Packet used, the type
of SIP packet used, and the total network utilization as a
percentage of network capacity.

Figure 3. The TRAPP Forensic Tool System

C. Performance Metrics
In order for the system to be effective, it must have a high

probability of successfully intercepting, processing, and
recording those packets on the network that belong to a P2P
protocol supported by the system, and whose identifiers are on
the lists of interest. By extension, in order for the system to
successfully intercept these packets of interest, it must have the
capability to analyze all traffic on a network, which necessitates
the requirement of processing each packet as quickly as possible
for a given set of parameters. Thus, the following performance
metrics are defined:

• Packet Processing Time: The number of CPU cycles, as
measured by the Power PC processor’s System Timer, that
are required to accomplish the following: determine if a
packet has been received by Ethernet controller, inspect the
packet for P2P protocols, match the packet’s identifier
against the appropriate list, record the packet if necessary,
and make the Ethernet controller available to receive
another packet entering the system.

• Probability of Packet Intercept: The probability of a
packet, whose format matches a P2P protocol supported by
the system, and whose identifier matches an entry on a list
of interest, being successfully recorded in the system
intercept log.

D. System Parameters
• Size of List of Interest: This is the size of the list of interest,

expressed by the number of entries in the list. For the
BitTorrent protocol, an entry is a 160-bit file info hash. For
the SIP protocol, an entry is the first 12 digits of a SIP URI.
Because the system uses a binary search algorithm to
perform the hash/SIP URI matching process, each doubling
of the list size will add a maximum of one comparison to
the total algorithm execution time. For this research, a
sample list size of 1000 entries is used for both the file info
hash list and the SIP URI list.

• Network Speed: This is the maximum speed of network
data entering the system through the Ethernet connection.
The Ethernet controller on the Xilinx II Pro board used in
this research is capable of connecting to either a 10 Mbps or
a 100 Mbps network. For this research, the 100 Mbps
connection option is used.

• TRAPP Software Configuration: The software code used to
execute TRAPP functions using the Power PC processor on
the FPGA. As procedures and features contained in the
software are added, removed, or modified, the overall
functions and performance of the system are affected.

• Peer-to-Peer Protocols Supported: This is the set of P2P

protocols that the system is capable of detecting and
analyzing. For the first experiment, the BitTorrent protocol
is the only member of this set. In the second experiment,
the Session Initiation Protocol is added to the set.

E. Workload Parameters
• BitTorrent Packet Type: In this study, three different types

of BitTorrent packets are used: a BitTorrent Handshake
packet whose file info hash matches an entry on the list of
interest, a BitTorrent Handshake packet whose file info
hash does not match an entry on the list of interest, and a
packet that is not a properly formatted BitTorrent
Handshake packet.

• SIP Packet Type: Three different types of SIP packets are
used in this study: a SIP INVITE packet whose TO and
FROM SIP URIs match an entry on the list of interest, a
SIP INVITE packet whose TO and FROM SIP URIs do not
match an entry on the list of interest, and a SIP BYE packet
whose TO and FROM SIP URIs match an entry on the list
of interest.

• Network Utilization: This is the total amount of traffic
entering the system. For the first test, the network
utilization is limited to single packets injected into the
system to measure the time required to fully process the
packet. For the second test, a 1.1 gigabyte video file is
transferred from one node on the network to another node
on the network using the Windows NETBIOS file transfer
protocol to generate a non-P2P traffic load. This transfer
injects a load of between 89.6 Mbps and 89.7 Mbps into the
system, which equates to approximately a 90% utilization
of the 100 Mbps Ethernet connection. For the third test, a
continuous stream of identical P2P packets of interest is
injected into the system, with the network utilization
varying with the type of P2P packet.

F. Configuration
The software configuration is the factor designated as the

Component Under Test. It controls all aspects of the system,
including what information is provided to the user, how
network data is captured and analyzed, and how packets of
interest are stored. The six levels chosen for this factor are
detailed below.

1) Control Configuration: The system is implemented as an
embedded software application using the Power PC core on the
Virtex II Pro FPGA development board. Xilinx-provided
drivers and built-in functions are used where possible, with
custom software built to accomplish the following functions:
read the data file containing the file info hashes of the list of
interest, perform packet payload inspections, copy BitTorrent
Handshake frames to on-chip RAM, perform the hash match-
ing, and write the frame data to the log file on the compact flash
card.

Listed below are the salient features of the Control
configuration:

• All modules are executed in software. The only hardware
modification made is to enable the Ethernet controller to
operate in promiscuous mode.

• To simplify the software code as much as possible, the
Ethernet controller is limited to one receive buffer, caching
is not used, and no user alerts are generated for the user.

• Packets of interest are copied three times. The first copy is
from the Ethernet controller buffer to block RAM upon

detection of the 32-bit BitTorrent signature in the packet’s
payload. If the file info hash is found on the list, the frame
is copied from RAM to a character array, and then from the
array to the log file on the compact flash card.

• Frames are copied to the compact flash card as they are
processed. The system waits until the current frame has
been completely processed and sent to the compact flash
card before beginning to process another frame.

2) User Alerts Configuration: This modification adds to the
system user notifications, via the serial port, of any P2P control
packets that are found by the system. The messages consist of
the type of P2P packet found, whether the file info hash matches
an entry on the list of interest, and the file info hash’s position
on the list of interest. Because the serial port runs at a much
lower speed than the CPU and the processing bus, it is
hypothesized that sending any data over the RS232 connection
causes a dramatic slowdown in overall processing time.

3) Packet Write Configuration: In this modification, all
captured packets of interest are stored within a RAM block
instead of writing them individually to the compact flash card.
When the system is shut down, all data are then transferred from
the block RAM to the compact flash card. By storing the data
within RAM, the only write functions to the compact flash card
are performed before packet sniffing begins and after packet
sniffing terminates. It is hypothesized that writing to the
compact flash card is a high-latency process, and that its
removal will result in a significant processing time savings.

4) Dual Buffer Configuration: This modification adds a
second receive buffer to the Ethernet controller [23]. This
allows one frame to be read and processed while another frame
is received. The goals for this optimization are to give the
comparison and copying routines additional time to execute,
and limit the number of frames dropped due to a full receive
buffer.

5) Cache Configuration: This modification enables the
instruction and data caches for the Power PC processor. By
allowing the FPGA to cache processor instructions, heap data,
and stack data instead of performing multiple reads and writes
to block RAM, a significant amount of processing time should
be saved.

6) Combined Configuration: This is the combined case of the
CUT incorporating the Packet Write, Dual Buffer, and Cache
optimizations into a single system. The goal for the integration
is to take advantage of each optimization individually and to
possibly gain synergistic time savings from the combination of
all four optimizations.

G. Experimental Environment
To conduct the two experiments, the experimental setup

shown in Figure 4 is created. The experimental environment
consists of the following components:

• One Cisco Catalyst 2900XL 100 Mbps switch configured
with 22 standard ports and 2 spanning ports.

• Two Dell Inspiron Windows XP Service Pack 2 laptops
loaded with �Torrent 1.7.7 [24], a popular BitTorrent
client, and X-Lite 3.0 [25], a popular VoIP phone client,
and connected to the switch.

• One Dell Inspiron laptop that is dual-equipped with the
BackTrack 2.0 Linux environment [26] and Windows XP
Service Pack 2, and is connected to the switch. The
BackTrack environment contains the hping 3.0.0 [27]
utility, which is used to inject the crafted BitTorrent and

SIP packets. The Windows environment contains the
VMWare 2.0.5 [28] utility to run a TrixBox 2.2 [29] SIP
proxy and registrar server for use with the X-Lite clients.

• One Virtex II Pro FPGA system (the SUT), which is
connected to a spanning port on the switch.

• One Dell Inspiron Windows XP Service Pack 2 laptop
loaded with Wireshark 1.0.1 [30], which is connected to a
second spanning port to act as a packet sniffer for an
experimental control.

• One Dell Windows XP Service Pack 2 laptop, which is
connected to the SUT and is used to configure and load the
Virtex II Pro via a USB port. The laptop is also equipped
with TTermPro [31], a HyperTerminal application used to
receive alerts from the SUT via a RS232 serial port.

The actual experimental setup used is shown in Figure 5.

Figure 4. Block Diagram of the Experimental Setup

Figure 5. Experimental Setup for the Three Performance

Tests

H. Evaluation Techniques
Outlined below are the tests used for collecting data on the

packet processing time and probability of packet intercept
metrics for each experiment.

1) Calculating Packet Processing Time: The first test
consists of a series of packets sent from the Linux laptop to one
of the Windows laptops via the Cisco switch. For each run, a
series of 50 crafted packets are sent, and the CPU cycles needed
by the system to process each packet is recorded.

A total of 50 identical packets are sent in one second intervals
through the network. Based on the testing of several different
sample sizes, 50 packets is the minimum sample size that results

in sufficiently small confidence intervals to perform a
meaningful comparison between system configurations. To
ensure the independence of each trial, one second is chosen as
the interarrival interval. To determine the number of cycles
required to process each packet received by the system, a Power
PC System Timer time stamp is taken prior to the beginning of
the processing, and another time stamp is taken immediately
after the processing routine ends. To compute the number of
cycles required to process the packet, the two values are simply
subtracted from each other. Since the Power PC processor in the
SUT is configured to run at 300 MHz, to convert the processing
time from clock cycles to standard time units, the formula (time
= cycles/300) is used, where cycles is the number of cycles as
determined by the System Timer and time is the time to process
the packet in microseconds.

2) Calculating Probability of Intercept Under a Non-P2P
Load: The second test consists of a series of packets sent from
the Linux laptop to one of the Windows laptops via the Cisco
switch. For this test, however, an additional non-P2P traffic
load is generated on the network. For this test, the number of
crafted packets successfully intercepted and processed by the
system is recorded.

For each test, a series of three hundred crafted packets are
injected into the network 500 milliseconds apart. By injecting
the packets 500 milliseconds apart, the results of each trial
(either the packet was captured or not captured) are assured to
be independent of each other. Based on the testing of several
different sample sizes, 300 packets is a good sample size to
produce a binomial distribution that results in sufficiently small
confidence intervals to perform a meaningful comparison
between system configurations. Again, to ensure the
independence of each trial, i.e., to ensure that the system is not
processing one crafted packet when another one arrives at the
system, the packets are sent 500 milliseconds apart.

3) Calculating Probability of Intercept Under an All-P2P
Load: The third test also consists of a series of packets sent from
the Linux laptop to one of the Windows laptops via the Cisco
switch. As in the first test, a series of crafted packets are sent
across the network. However, for this test, the packets are sent
as quickly as possible from the Linux laptop using the hping
--flood switch.

In order to determine how many packets were sent by the
Linux laptop, a particular feature of the hping program is
exploited. When the hping program sends a series of packets,
each packet contains a different source port, and the source port
number is incremented by one each time a packet is transmitted.
Thus, for a given series of packets, the total number of packets
sent in the series can be calculated by subtracting the first
packet’s source port number from the last packet’s source port
number.

In this test several thousand packets are sent over the network
as quickly as possible using hping and the flood is then
terminated manually. To determine the probability of packet
intercept, the following procedure is used:

1) Inspect the capture log file and record the number of
frames successfully captured by the system.

2) Record the source port number of the first packet in the log
file, and the source port number of the last packet in the
log file.

3) Compute the probability of packet intercept using
(ݐ݌݁ܿݎ݁ݐ݊݅ ݐ݁݇ܿܽ݌)ܲ = ௡௨௠௕௘௥ ௢௙ ௣௔௖௞௘௧௦ ௜௡ ௟௢௚௉௢௥௧(௟௔௦௧ ௣௔௖௞௘௧)ି ௉௢௥௧(௙௜௥௦௧ ௣௔௖௞௘௧) (1)

When performing these tests, another important parameter is

the network utilization or network load. To determine the
minimum overall network load, the Wireshark utility on the
laptop that is connected to the second spanning port is used to
analyze all traffic sent during the test. At the conclusion of the
test, a capture summary is extracted, and the Average MBit/sec
value is recorded. Because Wireshark itself may not capture all
packets on the network, this value is assumed to be the minimum
network traffic load.

IV. RESULTS AND ANALYSIS

A. Results and Analysis of Experiment 1 -BitTorrent
1) Test 1: Calculating Packet Processing Time: The first test

performed on the system is used to determine how many CPU
cycles are required to process each type of packet. Outlined
below are the results of the Calculating Packet Processing Time
test.

a) Non-P2P Packet Workload: Table I shows the results
of a one-variable t-test performed on each of the six
configurations using the Non-P2P packet type. The table gives
the mean number of CPU cycles required to process the
non-P2P packet, the standard deviation, and a 95% confidence
interval for the mean. As shown in the table, the number of
cycles required ranges from 276 cycles to 1,344 cycles, which
equates to a range of 0.92 to 4.48 microseconds per packet.

Table I. Packet Processing Times for Non-BitTorrent Packets

Configuration Mean Standard
Deviation

Confidence Interval
(95%)

Control 1206.00 0.00 (1206.00, 1206.00)
User Alerts 1152.00 0.00 (1152.00, 1152.00)
Dual Buffer 1344.00 109.10 (1313.00, 1375.00)
Packet Write 1146.00 0.00 (1146.00, 1146.00)

Cache 276.00 0.00 (276.00, 276.00)
Combined 303.50 25.76 (296.18, 310.82)

b) BitTorrent Packet Not On the List Workload: Table II

shows the results of a one-variable t-test performed on each of
the six configurations using the BitTorrent Packet Not On the
List packet type. As shown in the table, the number of cycles
required ranges from 1,145 cycles to 7,770 cycles, which
equates to a range of 3.82 to 25.90 microseconds per packet.

Table II. Packet Processing Times for BitTorrent Packets Not
on the List

Configuration Mean Standard
Deviation

Confidence Interval
(95%)

Control 7296 0.00 (7296, 7296)
User Alerts 1044756 730 (1044549, 1044963)
Dual Buffer 7770 0.00 (7770, 7770)
Packet Write 7593 0.00 (7593, 7593)

Cache 1145 0.00 (1145, 1145)
Combined 1205 0.00 (1205, 1205)

c) BitTorrent Packet On the List Workload: Table III

shows the results of a one-variable t-test performed on each of
the six configurations using the BitTorrent Packet On the List
packet type. As shown in the table, the number of cycles
required ranges from 3,783 cycles to 118,986 cycles, which
equates to a range of 12.61 to 396.62 microseconds per packet.

Table III. Packet Processing Times for BitTorrent Packets on
the List

Configuration Mean Standard
Deviation

Confidence Interval
(95%)

Control 116207 22418 (109836, 122578)
User Alerts 1702125 22880 (1695623, 1708628)
Dual Buffer 118986 22391 (112623, 125350)
Packet Write 23292 318 (23202, 23382)

Cache 14679 2064 (14093, 15266)
Combined 3783 75 (3762, 3805)

Analyzing this data, the following observations are made

about the results of the first test:
• For the two BitTorrent packet workloads, messages to the

user are sent in the User Alert configuration, resulting in a
several order of magnitude increase in processing time.
This increase is due to the fact that the user alerts are
transmitted via serial port at 115,200 baud, which is
significantly slower than the 300 MHz processor speed and
100 MHz bus speed used by the FPGA board. Based on this
significant increase in packet processing time, and the
corresponding decrease in overall system performance, all
user alerts are eliminated from the final design.

• Adding a second receive buffer results in more CPU cycles
required to process a packet, regardless of the type of
packet. This is due to the additional processing cycles
required to check both receive buffers in order to determine
which one contains the next packet to be processed.
However, as shown in Section IV.A.2, though this
modification increases processing time, the second
Ethernet receive buffer also increases the system’s overall
probability of packet intercept.

• As expected, the modification to the packet writing routine
only decreases the packet processing time when packets are
actually written to the log file. For the cases where packets
are not written, no significant processing time is gained or
lost with this optimization.

• Enabling the caches results in a significant decrease in CPU
cycles required to process a packet, regardless of packet
type.

2) Test 2: Calculating Probability of Intercept Under a
Non-P2P Load: Table IV shows the results of the packet
intercept test under a heavy non-P2P network load. For each
configuration tested, the number of packets captured out of the
300 sent is shown. The table also shows the probability of
packet intercept and the corresponding 95% confidence interval
for each configuration. In all tests, the total load on the network
is measured by the Wireshark packet sniffer to be between 89.6
Mbps and 89.7 Mbps, which equates to an 89.6% load on the
100 Mbps network. However, this measurement is not absolute,
as the Wireshark program itself can drop packets under a heavy
load. Since it is unknown how many packets were dropped by
Wireshark, 89.6% is considered to be the minimum load on the
test network.

Table IV. Probability of Packet Intercept Under a Non-P2P
Workload

Configuration
Packets

Captured
(Events)

Packets
Sent

(Trials)

Probability
of Packet
Intercept

Confidence
Interval (95%)

Control 159 300 0.5300 (0.4718, 0.5876)
User Alerts 166 300 0.5533 (0.4951, 0.6105)
Dual Buffer 292 300 0.9733 (0.9481, 0.9884)
Packet Write 174 300 0.5800 (0.5219, 0.6365)

Cache 289 300 0.9633 (0.9353, 0.9816)
Combined 300 300 1.0000 (0.9901, 1.0000)
Wireshark 298 300 0.9933 (0.9761, 0.9992)

Table IV shows that while the User Alerts and Packet Write

configurations capture more packets of interest than the Control
(166 and 174 versus 159), the overlapping confidence intervals
suggest that the differences are not statistically significant. The
table also shows that the Cache and Dual Buffer configurations
perform significantly better than the Control. Moreover, the
Combined configuration performs better than the other five
configurations (300 out of 300 packets captured), returning a
test result of 100% probability of packet intercept for packets of
interest, which is comparable to the 99% capture rate of the
Wireshark packet sniffer.

To further determine the statistical significance of these
results, hypothesis tests are performed between the various
optimizations versus the Control configuration. The p-value for
the one-sided test involving the User Alerts and the Control is
too high (0.283) to state with confidence that the increase in
probability of packet intercept is statistically significant. In the
one-sided test involving the Packet Write optimization and the
Control, again the p-value is too high (0.109) to accept the
alternative hypothesis, but it can be inferred that the
optimization did provide some improvement to the probability
of packet intercept. For the Cache, Dual Buffer, and Combined
configurations, the p-value for the one-sided test is 0.000,
indicating a strong statistical certainty that these configurations
are better than the Control configuration.

To determine the overall performance of the Combined
configuration, another set of hypothesis tests are performed
between the Combined configuration versus the individual
optimizations and Wireshark. The p-value for the one-sided
tests involving the User Alerts, Packet Write, Cache, and Dual
Buffer optimizations ranges between 0.000 and 0.002,
indicating a strong statistical certainty that the Combined
configuration is better than each individual optimization by
itself. When the Combined configuration is compared to the
performance of Wireshark, the p-value for the one-sided test is
0.078, which is too high to accept the alternative hypothesis that
the Combined configuration performs better than Wireshark,
but does indicate that the probabilities of packet intercept of the
two are comparable.

Analyzing this data, the following observations are made
about the results of the second test:

• Adding User Alerts to the system has no statistical impact
on the probability of packet intercept, positive or negative.
However, given the vast increase in packet processing time
associated with messages sent to the user (5,673.8
microseconds with the User Alerts versus 387.4 without
User Alerts), their removal is still justified in the final
system design. This point is discussed further in Section
IV.C.

• The alternate Packet Writing scheme does not, by itself,
significantly improve overall system performance.

However, this optimization, when combined with other
improvements, does provide some benefit to the Combined
configuration’s performance.

• The optimizations that enable the caches and the second
receive buffer each have a significant positive impact on
overall system performance. For each optimization, system
performance increased over 80% from the Control
configuration.

• The combination of all three optimizations returned the
best performance of any configuration. Even with the
additional processing required to analyze all packets on the
network for the BitTorrent protocol signature, the system
returned similar performance to the dedicated
software-based packet sniffer, Wireshark.

3) Test 3: Calculating Probability of Intercept Under an

All-P2P Load: Table V shows the results of the packet intercept
test under an all-P2P network load. For each configuration
tested, the number of BitTorrent Handshake packets that are
sent over the network in order for the system to capture 400 of
them is shown in the table. The table also shows the probability
of packet intercept and the corresponding 95% confidence
interval for each configuration. In all tests, the total load on the
network is measured by the Wireshark packet sniffer to be
between 23.35 and 24.10 Mbps, which equates to
approximately a 23.3% load on the 100 Mbps network. This is
the maximum network throughput possible using the hping
utility and the BitTorrent Handshake workload.

Table V shows that the only configuration that performs
worse than the Control is the User Alerts configuration (3.4%
capture rate for Control versus 1.5% capture rate for User
Alerts). The Cache and Dual Buffer configurations perform
slightly better than the Control, but still are only able to capture
less than 12% of packets sent. The Packet Write configuration
performs moderately better than the Control (40.4% versus
3.4% capture rate), but it is still unable to capture more than 1 in
2 packets. Finally, the Combined configuration performs
significantly better than the other five configurations (400 out of
400 packets captured), returning a test result of 100%
probability of packet intercept and comparing very favorably
with Wireshark’s result of 99.0%.

Table V. Probability of Packet Intercept Under an All-P2P
Workload

Configuration
Packets
Sent
(Trials)

Probability
of Packet
Intercept

Confidence
Interval
(95%)

Control 11757 0.0340 (0.0308, 0.0375)
User Alerts 26810 0.0149 (0.0135, 0.0164)
Dual Buffer 9188 0.0435 (0.0395, 0.0479)
Packet Write 990 0.4040 (0.3733, 0.4354)
Cache 3599 0.1111 (0.1011, 0.1219)
Combined 400 1.0000 (0.9925, 1.0000)
Wireshark 404 0.9901 (0.9748, 0.9973)

To further validate the statistical significance of these results,

hypothesis tests are performed between the various
optimizations versus the Control configuration. The p-value for
the one-sided test involving the User Alerts and the Control is
1.000, which corresponds to the fact that the User Alerts
configuration actually performed worse than the Control. In the
one-sided tests involving the other four optimizations, the
p-value for the one-sided test is 0.000, indicating a strong
statistical certainty that these configurations have a better

probability of packet intercept than the Control configuration.
To determine the overall performance of the Combined

configuration, another set of hypothesis tests are performed
between the Combined configuration versus the individual
optimizations and Wireshark. The p-value for the one-sided
tests involving the User Alerts, Dual Buffer, Packet Write, and
Cache optimizations are all 0.000, indicating a strong statistical
certainty that the Combined configuration is better than each
individual optimization by itself. When the Combined
configuration is compared to the performance of Wireshark, the
p-value for the one-sided test is 0.022, which is low enough to
accept, with statistical confidence, the hypothesis that
probability of packet intercept for the Combined configuration
is higher than the probability of packet intercept using
Wireshark.

Analyzing this data, the following observations are made
about the results of the third test:

• Adding User Alerts to the system results in a 56% decrease
in performance, as measured by probability of packet
intercept. In this case, the vast increase in packet
processing time associated with messages sent to the user,
discussed above, is almost certainly the root cause of the
decrease in performance.

• The Dual Buffer and Cache optimizations, by themselves,
modestly improve system performance, but are still unable
to capture more than 50% of packets of interest. However,
combining them with the Packet Write optimization
provides a tremendous benefit to the Combined
configuration’s performance.

• The alternate Packet Writing scheme by itself provides a
moderate improvement to overall system performance. The
full benefit of this optimization is seen when combined
with caching and an improved Ethernet receive buffer.

• The combination of all three optimizations (Cache, Dual
Buffer, and Packet Write) has a synergistic effect on the
overall performance of the system when processing
back-to-back BitTorrent packets. By themselves, each
optimization returned moderate performance gains over the
Control configuration. When combined, however, they
created a system that is able to achieve a 100% probability
of packet intercept, which is comparable to the dedicated
software packet sniffer, Wireshark.

Overall, the Combined configuration is clearly the best of the
possible configurations for the CUT. The Combined
configuration consistently returned very low packet processing
times, indicating that it is able to process a variety of packets
faster than any individual optimization. The Combined
configuration also returned the highest values in both
probability of packet intercept tests, indicating that it has a
higher probability of intercepting packets of interest in both
non-P2P and all-P2P workload environments than any of the
other optimizations. Finally, using a 95% confidence interval,
the Combined configuration returns a minimum capture rate of
99.0% across all workloads, which is comparable to the
performance of Wireshark, which returned a minimum capture
rate of 97.5%.

B. Results and Analysis of Experiment 2 -BitTorrent and SIP
1) Test 1: Calculating Packet Processing Time: Table VI

shows the results of a one-variable t-test performed on the
Optimized (BT + SIP) configuration using six different packet
types. The table gives the mean number of CPU cycles required

to process the workload packet, the standard deviation, and a
95% confidence interval for the mean. As shown in the table,
the number of cycles required ranges from 419 cycles to 34,779
cycles, which equates to a range of 1.40 to 115.93 microseconds
per packet, depending on the type of packet.

Table VI. Packet Processing Times for SIP and BitTorrent
Packets Using the Expanded System

Configuration Mean Standard
Deviation

Confidence Interval
(95%)

Not P2P 418.6 36.0 (408.4, 428.4)
BT Not on List 1323.5 31.8 (1314.5, 1332.5)
BT Handshake 3883.0 85.6 (3858.7, 3907.4)
SIP Not on List 19450.0 97.8 (19422.2, 19477.8)
SIP BYE 29951.3 224.2 (29887.6, 30015.0)
SIP INVITE 34778.6 226.2 (34714.3, 34842.9)

Analyzing this data, the following observations are made

about the results of the first test:
• Adding SIP processing capability to the SUT results in a

higher packet processing time for both non-P2P and
BitTorrent Handshake packets. This is due to the additional
processing required by the system to determine if a packet
belongs to either the BitTorrent or SIP protocols, as
opposed to looking for only BitTorrent packets.

• The packet processing time required for any SIP packet is
several times longer than the time required to process
BitTorrent packets. The reasons for this increase in
processing time are explained in Section IV.C.

2) Test 2: Calculating Probability of Intercept Under a
Non-P2P Load: Table VII shows the results of the packet
intercept test under a heavy non-P2P network load using the
modified Optimized (BT + SIP) configuration. For each of the
three P2P packet types tested, the number of packets captured
by the system out of the 300 sent is shown. For comparison
purposes, the number of packets captured by the Wireshark
packet sniffer for each workload is also shown. In addition, the
table shows the probability of packet intercept and the
corresponding 95% confidence interval for each workload.

Table VII. Probability of Packet Intercept for BitTorrent and
SIP Packets Under a Non-P2P Workload

Workload
Packets
Captured
(Events)

Probability
of Packet
Intercept

Confidence
Interval
(95%)

BT Handshake 300 1.0000 (0.9901, 1.0000)
Wireshark BT 298 0.9933 (0.9761, 0.9992)
SIP BYE 300 1.0000 (0.9901, 1.0000)
Wireshark BYE 300 1.0000 (0.9901, 1.0000)
SIP INVITE 298 0.9933 (0.9761, 0.9992)
Wireshark INVITE 300 1.0000 (0.9901, 1.0000)

The modified Optimized (BT + SIP) configuration performed

perfectly (300 out of 300 packets captured) for two out of the
three workloads, and returned a 99% probability of packet
intercept for the other. This performance compares very
favorably with the results returned by the Wireshark packet
sniffer, which also returned a test result of near-100%
probability of packet intercept for packets of interest.

Analyzing this data, the following observations are made
about the results of the second test:

• The probability of packet intercept performance of the
system is unchanged when processing BitTorrent
Handshake packets. Regardless of whether the SUT is
processing a single BitTorrent Handshake packet amid a

high non-P2P network load or a steady stream of
Handshake packets, the system is able to achieve a 100%
probability of packet intercept. In addition, the SUT
performs slightly better than the Wireshark packet sniffer,
regardless of the overall workload.

• When processing SIP BYE packets, the SUT sees a 9%
decrease in probability of packet intercept when processing
the packets back-to-back over processing a single packet
amid a high non-P2P network load. The extended packet
processing time required for this type of packet causes the
system to occasionally drop the next frame entering the
SUT because it is still processing the current SIP frame in
the Ethernet receive buffer. The Wireshark packet sniffer,
however, returns perfect scores regardless of workload
type.

• When processing SIP INVITE packets, the SUT sees a
33.8% decrease in probability of packet intercept when
processing the packets back-to-back over processing a
single packet amid a high non-P2P network load. The
reason for this is the same as that for the SIP BYE packet.
However, the SIP INVITE packet, due to its larger overall
packet size, requires a longer packet processing time than
the BYE packet, resulting in a lower probability of packet
intercept than that of the SIP BYE packet. Wireshark,
however, does not suffer from this problem, returning a
probability of packet intercept of at least 99.7% for both
workloads.

3) Test 3: Calculating Probability of Intercept Under an
All-P2P Load: For each of the three all-P2P workloads
(BitTorrent Handshake, SIP INVITE, and SIP BYE), the total
load on the network is measured by the Wireshark packet
sniffer, and the results shown in Table VIII. The low maximum
network load for the BitTorrent Handshake packet workload,
which is also seen in the first experiment, is likely due to the fact
that the BitTorrent peer wire protocol runs on top of TCP. Both
the exponential backoff mechanism and the reliable data
transfer features of TCP add additional time between packets
sent over the network, causing a decrease in the maximum
throughput that the hping program can achieve. The SIP
INVITE and BYE packets, on the other hand, use UDP, which
allows hping to achieve a throughput of over 94 Mbps on the
100 Mbps network.

Table VIII. Observed Network Load for Various All-P2P
Workloads

Configuration Network Load (Mbps)
BitTorrent Handshake 23.35
SIP BYE 94.61
SIP INVITE 96.28

Table IX shows the results of the packet intercept test under

an all-P2P network load. For each P2P packet type tested, the
number of workload packets that were sent over the network in
order for the system to capture 400 of them is shown. For
comparison purposes, the number of packets captured by the
Wireshark packet sniffer for each workload is also shown. In
addition, the table shows the probability of packet intercept and
the corresponding 95% confidence interval for each
configuration.

Table IX. Probability of Packet Intercept for BitTorrent and
SIP Packets Under an All-P2P Workload

Workload
Packets
Sent
(Trials)

Probability
of Packet
Intercept

Confidence
Interval
(95%)

BT Handshake 400 1.0000 (0.9901, 1.0000)
Wireshark BT 404 0.9901 (0.9748, 0.9973)
SIP BYE 440 0.9091 (0.8783, 0.9343)
Wireshark BYE 400 1.0000 (0.9901, 1.0000)
SIP INVITE 608 0.6579 (0.6187, 0.6956)
Wireshark INVITE 401 0.9975 (0.9862, 0.9999)

Both the SUT and Wireshark perform very well under the

BitTorrent Handshake packet type, returning a probability of
packet intercept of over 99%. For the SIP BYE packet type, the
SUT returns a probability of packet intercept of just over 90%,
while Wireshark returns a perfect score of 100%. Finally, for
the SIP INVITE packet type, the SUT achieves a 65.8%
probability of packet intercept, while Wireshark performs much
better, returning a near-perfect score of 99.8%.

C. Overall Analysis
1) Analysis of Packet Processing Time: The first step in the

research methodology is to find a system configuration that
requires the minimum number of CPU cycles to process packets
entering the system. Based on the results presented here, the
most significant improvement to system speed occurs when the
data and instruction caches are enabled for the Power PC
processor. By allowing the FPGA to cache both processor
instructions and heap and stack data, packet processing time is
reduced by 77% to 87%, depending on the type of packet. In
addition, by delaying the compact flash write operations until
after the termination of system processing, the packet
processing time is reduced by 80% for packets written to the log
file. When all four optimizations are combined, the resulting
Combined configuration achieves a 75% to 92% reduction in
processing time of packets of interest over the Control
configuration, depending on the type of packet. Therefore, the
Combined configuration is confirmed to be the best system
configuration for minimizing the overall packet processing time
for all packets entering the system.

When the ability to process SIP packets is added to the
system, the mean packet processing time required to process
non-P2P packets increases by 115 cycles (0.38 microseconds)
and the time required to process BitTorrent Handshake packets
increases by 100 cycles (0.33 microseconds). This increase in
packet processing time is due to the additional software code
required to check each packet for the signature of a SIP control
packet as well as the signature of a BitTorrent Handshake
packet.

2) Analysis of Probability of Packet Intercept Under Load: In
the first experiment, the overall goal is to find the configuration
that returns the highest probability of packet intercept for both
non-P2P and all-P2P workloads. In the non-P2P case, where a
single BitTorrent packet is sent while the network is under a
heavy NETBIOS file transfer load, the Dual Buffer
optimization returns a capture rate of over 95%, while the single
buffer configurations (with the exception of the Cache
configuration, discussed below) all return capture rates of less
than 60%. This significant packet loss rate for the single receive
buffer configurations is likely due to the inability of a non-P2P
frame to be processed and cleared from the buffer before the
BitTorrent Handshake packet arrives at the system. At 100

Mbps, the mandatory inter-frame gap required by the Ethernet
protocol results in a 0.96 microsecond delay between the end of
one frame and the beginning of the next. Since the system
processes instructions at 300 MHz, it is able to perform at most
300 instructions per microsecond. Therefore, because multiple
instructions are required to transfer data from the Ethernet
buffer, read the payload contents, and analyze the data, the
system cannot keep up with the data flow, resulting in
significant packet loss as the system approaches 100%
utilization. However, note that the Cache optimization is the
exception to this observation; even with a single buffer,
enabling the caches results in a capture rate of 96%. This is
likely due to the fact that the extremely small processing times
provided by the cache enable a packet to be processed in the
short interframe time gap.

Adding a second receive buffer to the Ethernet controller
dramatically increases the probability of packet intercept under
a non-P2P workload, achieving a 97% capture rate even with no
other optimizations incorporated. The use of two receive buffers
allows a non-P2P packet to be processed from one buffer while
the BitTorrent Handshake packet is being received in the second
buffer. Specifically, the additional buffer provides a minimum
of 576 additional bit times ((7-byte preamble + 1-byte delimiter
+ 64-byte minimum frame size) x 8 bits per byte) for the
processing of the non-P2P frame over the single buffer option
[32]. Although this improvement comes at the cost of additional
processing cycles, the expanded processing window provided
by the second buffer more than offsets the cost in individual
packet processing times. When combined with caching and the
improved packet writing scheme, the infrequency of packets of
interest, and the small likelihood of traffic saturation on the
network link, the final Combined configuration allows the
system to successfully capture and process all BitTorrent
packets of interest sent into a network with a high non-P2P
traffic load.

For the situation where BitTorrent Handshake packets are
sent to the system back-to-back, as in the case of the all-P2P
workload, each system optimization returns a much different
probability of packet intercept. Using this workload, only the
Packet Write optimization results in a greater than 40%
probability of packet intercept; the other three optimizations all
return capture rates of less than 15%. These low capture rates
are due to the increased packet processing time required for
BitTorrent packets over non-P2P packets. When all four
optimizations are used together, the resulting Combined
configuration is able to achieve a 100% probability of packet
intercept for BitTorrent Handshake packets that are received
back-to-back by the SUT, which is comparable to the results for
the dedicated Wireshark packet sniffer.

When the ability to process SIP packets is added to the
system, the overall system performance is unchanged when
processing single packets of interest under a high non-P2P
network load. Regardless of P2P packet type (BitTorrent
Handshake, SIP INVITE, or SIP BYE), the system returns at
least a 97.5% probability of packet intercept. This performance
is comparable to that of the Wireshark packet sniffer, which
also returned a minimum 97.5% probability of packet intercept.

However, when the system is tasked with processing back-
-to-back P2P packets arriving at near-line speed, the system’s
performance depends greatly on the type of P2P packets
arriving at the SUT. For the BitTorrent Handshake packet
workload, the system still returns a probability of packet

intercept of 100%, which is unchanged from the non-SIP
processing system. When processing back-to-back SIP BYE
packets, the probability of packet intercept drops to 90.9%, and
when processing back-to-back SIP INVITE packets, the
probability of packet intercept drops further to 65.8%. These
results are expected, since the packet processing time of a SIP
BYE packet is much greater than that of a BitTorrent
Handshake packet, and the packet processing time of a SIP
INVITE packet is greater than that of a SIP BYE packet. Thus,
for the case where the system receives back-to-back packets of
interest, the probability of successfully intercepting both
packets is at least 90% for BitTorrent Handshake and SIP BYE
packets, and is less than two-in-three for SIP INVITE packets.
In comparison, the Wireshark packet sniffer achieved a
probability of packet intercept of greater than 99% for all three
packet types, which is likely due to the fact that Wireshark does
not perform any extraction or comparison of payload data in the
frames it collects.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions of Research
This paper presents an optimized FPGA-based system that

analyzes traffic on a network in real time, detects selected P2P
protocols, compares the digital information being shared
against a list of interest, and in the case of a match, records
selected control frames from the P2P session in a log file. With
one exception, across all types of P2P packets tested, the system
captures packets of interest with an intercept probability of at
least 97.6% under an 89.6 Mbps network load. In the rare case
where the system is processing packets at a rate of over 94
Mbps, and it receives two SIP control packets in a row, the
intercept probability decreases to 66%.

Optimizations to the system return varying changes to the
probability of packet intercept for packets of interest, ranging
from an increase of 4.4% for the User Alerts to an increase of
89% for the Combined configuration over the original system
design, further justifying the Combined configuration’s use for
the final optimized design. Using the Combined configuration,
the optimized system is able to capture a packet of interest with
a probability of packet intercept of at least 99.0%, using a 95%
confidence interval and given an 89.6 Mbps network utilization.

B. Significance of Research
This research provides network administrators with a unique

method of detecting and tracking both illicit file sharing and
VoIP phone call patterns. This system differs from other
methods of tracking illicit file sharing in that it is completely
passive, meaning the system transmits absolutely no
information into the network being monitored, making it
completely invisible to users of the network. By designing the
system to be completely self-contained on an FPGA, the
TRAPP system can be easily and inexpensively implemented
on any LAN. The simplicity of the system enables it to run at
very high speeds, even when monitoring a heavily utilized
network. Because the tool operates on a spanning port of the
network gateway, any failure of the TRAPP system will have no
negative impact on the network’s performance. Finally, the
system can be easily expanded to include additional P2P
protocols with minimum impact on overall system
performance.

C. Recommendations for Future Research

The next logical step for this research is to determine how the
system performs on a more robust network. Specifically, the
TRAPP system should next be tested on a gigabit Ethernet
network using a more advanced FPGA board that contains both
a faster processor and a gigabit Ethernet controller, such as the
Virtex 5-series FPGA [33]. Another area for future research is
addressing the encryption and obfuscation capabilities of P2P
networks. The next version of TRAPP should be able to detect
P2P control packets that have been obfuscated or encrypted, and
the relevant data extracted. Future research should also
investigate how much larger data sets affect the overall
performance of the TRAPP system.

REFERENCES
[1] “Navy Releases New Information On Presidential Security Leak,” March

2009, http://www.wpxi.com/news/18818589/detail.html.
[2] United States Department of Justice, “RCFL Program Annual Report

for Fiscal Year 2007,” 2008,
http://www.rcfl.gov/downloads/documents/RCFL Nat Annual07.pdf.

[3] Government Accounting Office, “File Sharing Programs: The Use of
Peer-to-Peer Networks to Access Pornography,” May 2005,
http://www.gao.gov/new.items/d05634.pdf.

[4] G. Owen, “Taliban Using Skype Phones to Dodge MI6,” September 2008,
http://www.dailymail.co.uk/news/worldnews/article-
1055611/Taliban-using-Skype-phones-dodge-MI6.html.

[5] J. Kahn, “Mumbai Terrorists Relied on New Technology for Attacks,”
December 2008,
http://www.nytimes.com/2008/12/09/world/asia/09mumbai.html? r=1.

[6] R. Badonnel, R. State, I. Chrisment, and O. Festor, “A Management
Platform for Tracking Cyber Predators In Peer-to-Peer Networks,”
Proceedings of the Second International Conference on Internet
Monitoring and Protection, p. 11, 2007.

[7] F. Adelstein and R. A. Joyce, “File Marshal: Automatic Extraction of
Peer-to-Peer Data,” Digital Investigation, vol. 4, no. Supplement 1, pp.
43–48, September 2007.

[8] K. P. Chow, K. Y. Cheng, L. Y. Man, P. K. Y. Lai, L. C. K. Hui, C. F.
Chong, K. H. Pun, W. W. Tsang, H. W. Chan, and S. M. Yiu, “BTM An
Automated Rule-Based BT Monitoring System for Piracy Detection,”
Proceedings of the Second International Conference on Internet
Monitoring and Protection, p. 2, 2007.

[9] B. Dedman and B. Sullivan, “GFR/CopyRouter Process Flow,” October
2008, http://msnbcmedia.msn.com/i/msnbc/Sections/NEWS/PDFs/
081016 copyrouter.pdf.

[10] P. Gil, ““Peer Guardian” Firewall: Keep Your P2P Private,” January
2008,
http://netforbeginners.about.com/od/peersharing/a/peerguardian.htm.

[11] R. MacManus, “The Underground World of Private P2P Networks,”
August 2006, http://www.readwriteweb.com/archives/private p2p.php.

[12] B. Dedman and B. Sullivan, “ISPs are Pressed to Become Child Porn
Cops,” October 2008, http://www.msnbc.msn.com/id/27198621.

[13] B. Cohen, “The BitTorrent Protocol Specification,” February 2008,
http://www.bittorrent.org/beps/bep 0003.html.

[14] B. Cohen, “Incentives Build Robustness in BitTorrent,” May
2003, http://www.bittorrent.org/bittorrentecon.pdf.

[15] “FIPS 180-1 -Secure Hash Standard,” May 1993,
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[16] Ubiquity, “Understanding SIP,” July 2008,
http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$File/
Ubiquity SIP Overview.pdf.

[17] “RFC 3261 -SIP: Session Initiation Protocol,” June 2002,
http://www.faqs.org/rfcs/rfc3261.html.

[18] Cisco, “Cisco Introduces New SIP-enabled Voice over IP Solutions,”
March 2002, http://newsroom.cisco.com/dlls/prod 031102.html.

[19] CounterPath Corporation, “Xten Softphone SDK Delivers PC-to-PC VoIP
in New Yahoo! Messenger,” June 2005,
http://www.counterpath.com/xten-softphone-sdk-delivers-pc-to-pc-voip-
in-new-yahoo-messenger.html. [20] Google, “Google Talk for
Developers,” October 2008, http://code.google.com/apis/talk/open
communications.html.

[21] Xilinx, “Xilinx University Program Virtex-II Pro Development
System,” June 2008,
http://www.xilinx.com/products/devkits/XUPV2P.htm.

[22] “BitTorrent Protocol Specification v1.0,” May 2008,
http://wiki.theory.org/BitTorrentSpecification.

[23] Rice University WARP Project, “Wireless Open-Access Research
Platform,” June 2006,
http://warp.rice.edu/trac/browser/PlatformSupport/WARPMAC/
warpmac.c.

[24] µTorrent, “µTorrent -The Lightweight and Efficient BitTorrent
Client,” June 2008, http://www.utorrent.com/.

[25] CounterPath Corporation, “X-Lite VoIP Softphone,” September 2008,
http://www.counterpath.com/x-lite.html&active=4.

[26] Remote-Exploit, “BackTrack,” June 2008,
http://www.remote-exploit.org/backtrack download.html.

[27] hping, “Hping -Active Network Security Tool,” July 2008,
http://www.hping.org/.

[28] VMWare, “VMware Player,” September 2008,
http://www.vmware.com/products/player/.

[29] Trixbox, “Trixbox, an Asterisk-based PBX Phone System,” September
2008, http://www.trixbox.org/.

[30] Wireshark, “Wireshark Network Protocol Analyzer,” July 2008,
http://www.wireshark.org/.

[31] Tera Term Pro, “Tera Term Pro Terminal Emulator,” July 2008,
http://hp.vector.co.jp/authors/VA002416/teraterm.html.

[32] IEEE, “IEEE Standard 802.3,” December 2005,
http://standards.ieee.org.

[33] Xilinx, “Virtex-5 Family Overview,” August 2008,
http://www.xilinx.com/support/documentation/data sheets/ds100.pdf.

