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Abstract—At issue for any organization is the illicit 

dissemination of sensitive information using file sharing 
applications within a network, and tracking terrorist cells or 
criminal organizations that are covertly communicating using 
Voice over IP (VoIP) applications. This paper presents a field 
programmable gate array (FPGA)-based embedded software tool 
designed to process file transfers using the BitTorrent peer-to-peer 
protocol and VoIP phone calls made using the Session Initiation 
Protocol (SIP). The tool searches a network in real time for 
selected peer-to-peer control messages using payload analysis and 
compares the unique identifier of the file being shared or phone 
number being used against a list of known contraband files or 
phone numbers. If the identifier is found on the list, the control 
packet is added to a log file for later forensic analysis.  

Results show that the FPGA tool processes peer-to-peer packets 
of interest 92% faster than a software-only configuration and is 
99.0% accurate at capturing and processing BitTorrent 
Handshake messages under a network traffic load of at least  
89.6 Mbps. When SIP is added to the system, the probability of 
intercept for BitTorrent Handshake messages remains at 99.0% 
and the probability of intercept for SIP control packets is 97.6% 
under a network traffic load of at least 89.6 Mbps, demonstrating 
that the tool can be expanded to process additional protocols with 
minimal impact on overall performance.  

Index Terms—P2P, network forensics, BitTorrent, VoIP, packet 
analysis.  
 

I. INTRODUCTION  
Peer-to-peer (P2P) networking has changed the way users 

search for, send, and receive digital information over the 
Internet. Instead of relying on interactions with centralized 
servers to upload and download digital content, users now share 
music, movies, documents, and conversations directly with 
other users. While P2P networking provides new and powerful 
applications for the legitimate distribution of digital 
information, it is also being used for many illicit purposes as 
well.  

One high-profile illicit use of P2P networking technology is 
the intentional or inadvertent distribution of sensitive 
government information to unauthorized personnel. In the 
summer of 2008, sensitive engineering and communication 
documents about the Marine One presidential helicopter were 
sent to an Internet Protocol (IP) address in Iran. Upon 
investigation by the United States Navy, it was determined that 
a defense contractor inadvertently released the documents after 
one of the company’s computers was loaded with a file sharing 
program, exposing the documents to users worldwide [1].  

Another illicit use of P2P networking technology is for the 
dissemination of child pornography. The Federal Bureau of 
Investigation’s (FBI) Regional Computer Forensics Laboratory 
states in its 2007 annual report that “cybercrime, which includes 
crimes against children and child pornography, is the offense 
for which law enforcement requested assistance most often” [2]. 
In addition, a 2005 Government Account Office report stated 
that “[P2P] technology is increasingly popular for 

disseminating child pornography” [3].  
Another area in which P2P networking is being used for 

illegal activities is covert communication among terrorist cells 
through Voice over IP protocols.  According to one British 
Government official, VoIP calls are “seriously undermining” 
MI6’s ability to intercept and track Taliban communications 
[4]. In addition, during the December 2008 terrorist attacks in 
Mumbai, India, the attackers’ Pakistan-based handlers sent in-
structions, intelligence, and encouragement using VoIP-based 
Internet phones [5]. During the 3-day series of attacks, the 
terrorists were able to communicate without their calls being 
traced or intercepted by authorities.  

To help combat these illicit uses for P2P networking, this 
research develops a system to identify and track any type of 
digital information transmitted on a network using P2P 
protocols. Several methods have already been developed to 
accomplish this task and are in use today, but they depend on 
the use of honeypots to lure targets into downloading 
contraband material [6], physical access to the suspected file 
sharer’s computer [7], active searching of the Internet for 
contraband files to download [8], or active interception and 
modification of contraband file sharing requests [9]. All of these 
methods are active attempts to discover illicit file sharing, with 
the drawback that they can all be detected and possibly 
circumvented by file sharers that are aware of their presence. In 
contrast, the system developed for this research consists of a 
suite of tools that passively detects and tracks illicit file sharing 
on a target network without affecting the flow of traffic on the 
network, making it impossible for users of the network to 
determine the presence of the system.  

The developed digital forensic tool, TRacking and Analysis 
for Peer-to-Peer (TRAPP) system, allows an investigator or 
system administrator to monitor network traffic in real-time for 
any digital information that meets the user’s definition of 
contraband being shared using P2P protocols. The TRAPP 
system (Figure 1) is designed to be set up on the gateway 
between an owned network and the Internet. As packets pass 
through the gateway, copies are sent to the system for analysis. 
For each packet received, TRAPP inspects the packet to 
determine if it is a control packet for a P2P protocol of interest. 
If the packet is not a P2P control packet, it is discarded. If the 
packet is a control packet, the system extracts from the packet’s 
payload the unique identifier for the data being shared, and 
attempts to match the identifier against a list of files of interest 
in the system’s memory. If a match is not made, the packet is 
discarded. If a match is made, the control packet is recorded in a 
log file for future analysis.  
 



 

 
Figure 1. The Proposed TRAPP System  
 

There are three primary goals for this research. The first goal 
is to construct a hardware-based system using a field 
programmable gate array that analyzes all network traffic sent 
to it, detects packets belonging to a specific P2P protocol, 
compares the digital information being shared against a list of 
interest, and in the case of a match, records selected control 
packets from the P2P session in a log file. The second goal is to 
optimize the system to increase the probability of detecting and 
recording all control packets, even when network traffic is at 
nearly the full capacity of the system’s Ethernet controller. The 
last goal is to demonstrate the system’s expandability by 
modifying it to accept an additional P2P protocol with no 
impact on overall performance.  

The following section presents related work in the area of 
detecting illicit file sharing and background on how the 
BitTorrent and SIP protocols work. Section 3 describes the 
construction of the research prototype and outlines the 
methodology used to design, set up, and conduct the 
experiments to test the effectiveness of the TRAPP system. 
Section 4 provides a discussion and analysis of the experimental 
results. Following this, the conclusions drawn from the 
experimental results, the significance of the completed TRAPP 
system, and areas for future research are given.  
 

II. BACKGROUND AND RELATED WORK  
 
A. Current Methods of Identifying Downloaders of Illegal 

Files  
Given the rapid rise of P2P file sharing, law enforcement 

agencies and copyright holders are struggling to keep up with 
illegal file sharers. Currently, there are several methods 
available to these entities to identify and track illegal file 
downloaders, several of which are discussed and analyzed 
below.  

1) Honeypots: One common method of identifying and 
tracking uploaders and downloaders of contraband files is 
through the use of honeypots. In the context of this discussion, a 
honeypot is a trap set by a government entity or private 
corporation with the purpose of detecting and tracking illegal 
activities. In its most basic execution, a computer is set up on 
the Internet with a collection of illegal files. When a computer 
attempts to download the illegal files, the downloader’s IP 
address, port number, date, time, and the packets being 
downloaded are recorded by the honeypot owner. Badonnel et 

al. designed and tested a management platform for tracking 
illegal file sharers in P2P networks [6].  

While effective against illegal downloaders who access the 
honeypots, there are several shortcomings to using this method 
for identifying and tracking illegal downloaders. First, the 
illegal downloader has to access the honeypot. To circumvent 
them, blacklists of IP addresses known to host honeypots have 
been created. Today, programs such as Peer Guardian are 
specifically designed to act as a downloading firewall that 
blocks these blacklisted IP addresses, preventing the user’s P2P 
software from downloading from them [10]. Second, illegal 
downloaders have to locate and actively download from the 
honeypot in order for the authorities to identify them. For 
certain classes of highly illegal files, such as child pornography, 
hard to find and password protected websites are used to keep 
the general public (and law enforcement) from accessing and 
downloading them [11].  

2) The BitTorrent Monitoring System: Another method for 
detecting and tracking illegal file downloaders is the BitTorrent 
Monitoring System (BTM), designed and presented by Chow et 
al. [8]. BTM is a system that automatically searches the Internet 
for BitTorrent-based downloadable files, analyzes the files to 
determine if they are illegal, attempts to download the suspected 
illegal files, and finally records tracking information on who 
provided the files for download.  

BTM has the potential to become a powerful law 
enforcement tool in combating illegal file sharing. However, 
there are problems with the system. First, due to the sheer 
number of torrent files that are available on most torrent 
websites, the BTM system currently suffers from a very slow 
processing time. As the number of sublevels covered by the 
search algorithm increases, the number of total torrent files to 
be analyzed increases exponentially, leading to a drastically 
reduced total processing time. Because the BTM system cannot 
run in real time, it currently cannot keep up with the constantly 
changing peer lists being produced by the tracker sites being 
monitored.  

3) Hardware Recovery of Illegal Files: Another method of 
identifying potential illegal file downloaders is to search the 
suspect’s computer for illegally downloaded files using digital 
forensic techniques. In their research, Adelstein and Joyce 
introduce a digital forensic tool called File Marshal which 
allows law enforcement to automatically detect and analyze 
P2P software usage on a hard drive [7].  

As with the use of honeypots, there are several drawbacks to 
the hardware recovery method. First, the investigator must 
physically possess the hard drive. In most cases, this requires 
some kind of legal action to force a suspect to turn over his 
computer to the investigator, which can be an extremely 
invasive procedure. 

Second, in order to recover a suspect’s hard drive for 
analysis, investigators must first determine that the hard drive is 
worth analyzing. In other words, investigators must already 
suspect the computer as containing illegal files before acting to 
confiscate the drive for analysis. This type of investigation is 
extremely time and labor intensive, limiting the ability of law 
enforcement to tackle widespread illegal file sharing using this 
method.  

4) The CopyRouter Peer-to-Peer Tracking System: In 
October 2008, MSNBC reported that an Australian company, 
Brilliant Digital Entertainment Ltd., was marketing a new 
Internet monitoring tool known as CopyRouter [9]. The 



 

CopyRouter system inspects every packet entering or leaving a 
target network, looks for P2P search results that reference files 
that are on a known contraband list (such as child pornography, 
the stated primary application of the system), and replaces the 
illicit file reference with one that leads the user to a law 
enforcement server instead [12].  

While the CopyRouter system seems like an effective 
contraband tracking system, there are several lingering 
questions surrounding its implementation. First, CopyRouter is 
a proprietary system, and to date, Brilliant Digital 
Entertainment has yet to release any specifications or 
experimental data on the system’s speed, effectiveness, or 
ability to process all packets at full network speed.  

Second, while seemingly effective for P2P systems where 
only one uploader is involved, such as Gnutella, the system’s 
ability to monitor distributed P2P systems such as BitTorrent is 
questionable. As discussed later in this section, as a BitTorrent 
client downloads pieces of the file from peers, each piece is 
hashed and compared against the .torrent file. If the hashes do 
not match, which is always the case when the user downloads 
from the law enforcement content server, the piece is simply 
discarded.  

Finally, CopyRouter is an active detection and tracking 
system, meaning that each packet entering or leaving the 
network is read and possibly modified before being allowed to 
continue through the gateway. One consequence of this is that 
the system’s presence can theoretically be detected by users 
with enough knowledge of how the system works. These users 
can then modify their behavior and simply not use the 
monitored network to share illicit information.  

 
B. The BitTorrent Protocol  
The P2P protocol of interest is the BitTorrent protocol [13]. 

BitTorrent differs from other distributed P2P protocols in that it 
allows downloaders to download pieces of files from tens or 
hundreds of other users simultaneously. To further speedup 
downloads, every user that downloads pieces of files also 
uploads those pieces he already possesses. By aggregating the 
slower upload speeds of hundreds of peers, the protocol can 
achieve very high download rates [14].  

The key BitTorrent component used in this research is the 
info hash of the file dictionary. To create the info hash, the 
SHA-1 algorithm [15] is applied to the information dictionary 
contained in the .torrent file. The resulting message digest is 
labeled as the “file info hash”, which uniquely identifies the file 
being offered for download regardless of the file description 
contained in the .torrent file. The client provides the file info 
hash as the file identifier in the request for a peer list and when 
establishing connections using the handshake message. By 
comparing this hash against a list of hashes compiled from the 
.torrent files of data of interest, we will be able to determine if 
the client is attempting to download or upload a file of interest.  

In this research, the TRAPP system identifies and analyzes 
BitTorrent handshake packets, which are used by BitTorrent’s 
Peer Wire Protocol to establish data transfer session between 
peers. The system extracts the 20-byte file info hash, identifies 
the data being transferred from the handshake packet and 
attempts to find a match to the list of interest.  

 
C. The Session Initiation Protocol  
In 1999, Henning Schulzrinne submitted the plan for a 

protocol to establish and control multiparty multimedia 

sessions, and was approved by the IETF as RFC 2543, the 
Session Initiation Protocol [16]. According to the updated 
version of the protocol, IETF RFC 3261, “SIP is an 
application-layer control protocol that can establish, modify, 
and terminate multimedia sessions (conferences) such as 
Internet telephony calls” [17]. The goal of SIP is not to 
exchange data between participants; rather, its purpose is to 
allow the participants to find one another, and to manage the 
data connection once established. This allows SIP to be used for 
a large number of data transfer applications, such as interactive 
gaming, media on demand, and voice or video conferencing 
[16].  

Because SIP is an open source protocol, it is rapidly 
becoming the de facto standard for multimedia session control. 
SIP is currently used by the popular VoIP provider Vonage 
[18], by Microsoft for its MSN Messenger system [16], and by 
Yahoo! for its Yahoo! Messenger system [19]. SIP has also 
been selected by the 3G community to be its session control 
protocol for the 3G cellular network [16], and Google is 
planning to incorporate SIP into the protocol used by its popular 
Google Talk service [20].  

In this research, the TRAPP system identifies and analyzes 
SIP INVITE and BYE packets, used to set up and take down 
communications sessions, in order to extract the caller and 
receiver SIP Uniform Resource Identifiers (URIs). These two 
types of packets are also used to determine the beginning and 
end of the communication session.  

 
III. THE TRAPP SYSTEM APPARATUS AND TESTING 
METHODOLOGY  

The objective of this research is to develop a system to 
identify and track specific digital information being transmitted 
on a network using P2P protocols. The proposed system will 
detect P2P transmissions on a target network, classify them by 
specific P2P protocol, compare the digital file being transmitted 
against a list of interest, and identify the sender and recipient by 
IP address.  

The goals of this research are to:  
• Construct an FPGA-based system that analyzes traffic on a 

network, detects a selected P2P protocol, compares the 
digital information being shared against a list of interest, 
and in the case of a match, records selected control packets 
(“packets of interest”) from the P2P session in a log file.  

• Optimize the system such that it is able to detect and record 
all packets of interest on the network, even under a heavy 
(approximately 90 percent utilization) non-P2P traffic load.  

• Modify the system to detect and record control packets of 
interest belonging to a second P2P protocol with no 
negative impact on overall performance.  

 
A. Approach  
The forensic tool is designed using the Virtex II Pro FPGA 

development board [21] and for the BitTorrent P2P protocol. 
Implementing the system on an FPGA allows the software 
application to directly access the Ethernet controller buffers, 
bypassing the rest of the network stack and increasing the 
system’s simplicity and speed. Once the system is optimized 
and tested using this protocol, the system is expanded to also 
process the Session Initiation Protocol, and tested again.  

Figure 2 shows the overall functionality of the design. When 
the system processes a packet, the following occurs:  

1) The tool fingerprints the frame received from the network 



 

by extracting the first 32 bits of the frame’s payload.  
2) The 32-bit fingerprint is then compared to the first 32 bits 

of a BitTorrent Handshake message, which is 
0x13426974 [22], a SIP INVITE message, which is the 
ASCII string “INVI”, or a SIP BYE message, which is 
the ASCII string “BYE ” [17].  

3) If the fingerprint of the frame’s payload is not a match to 
any of these strings, the frame is discarded.  

4) If the fingerprint matches that of a BitTorrent Handshake 
message, the first 32 bits of the Handshake’s file info hash 
is extracted from the frame, and compared against a list of 
hashes belonging to files of interest using a binary search.  

5) If the fingerprint matches that of a SIP message, the first 
12 characters of the TO and FROM SIP URIs are 
extracted from the frame, and each is compared against a 
separate list of SIP URIs of interest using a binary search.  

6) If the file info hash/SIP URI is not on the list, the frame is 
dropped.  

7) If the file info hash/SIP URI is on the list, the frame is 
saved in a Wireshark-readable log file and placed on a 
compact flash card. The frames recorded in the log file are 
later analyzed to extract IP address information, which 
can then be used to perform tracking and forensic analysis.  

 

 
Figure 2. Packet Data Flow through the TRAPP System  
 
This research is divided into two experiments: finding a 

software configuration for the system that processes BitTorrent 
packets of interest as quickly as possible and expanding the 
system to incorporate the SIP protocol without sacrificing 
overall performance. Each of the two experiments is comprised 
of three tests: calculating packet processing time, calculating 
probability of packet intercept under a non-P2P workload, and 
calculating probability of packet intercept under an all-P2P 
workload. Overviews of the two experiments are outlined 

below.  
1) Experiment 1: Finding an Optimal Software 

Configuration: The first experiment seeks to determine the 
optimal hardware/software configuration of the system that 
processes BitTorrent packets of interest as quickly and as 
accurately as possible. This experiment is split into three parts. 
First, each hardware/software configuration is tested against 
several types of packet sizes and formats, and the amount of 
processor time needed to process each packet is examined. 
Second, a series of BitTorrent packets of interest are sent to 
each configuration in a high non-P2P network utilization 
environment, and the overall probability of intercept of a packet 
of interest is calculated for each configuration. Finally, a series 
of BitTorrent packets is sent to the system at near-full network 
utilization in order to determine the probability of intercepting 
consecutive packets of interest.  

2) Experiment 2: Expanding the Forensic Tool to 
Incorporate VoIP Functionality: The second experiment seeks 
to determine if adding functionality to process SIP packets, in 
addition to BitTorrent packets, degrades overall system 
performance. For this experiment, the optimal configuration 
found in the first experiment is modified to also include 
detection and processing of SIP packets of interest. As with the 
first experiment, this experiment consists of three parts. First, 
the modified configuration is tested against several types of 
BitTorrent and SIP packets, and the amount of time needed to 
process each packet is examined. Second, a series of BitTorrent 
and SIP packets of interest are sent to the modified 
configuration in a high network utilization environment, and the 
probability of intercept of each type of packet of interest is 
calculated. The results of this experiment are then compared 
against the results of the first experiment to determine if the 
system’s overall performance in processing BitTorrent packets 
of interest is negatively impacted. Finally, a series of P2P 
packets is sent to the system at near-full network utilization in 
order to determine a measure of the probability of intercepting 
consecutive packets of interest for each P2P protocol.  

 
B. System Boundaries  
The System Under Test (SUT) for this research is the TRAPP 

Forensic Tool System. A block diagram of the SUT is shown in 
Figure 3. It consists of the following FPGA components: the 
TRAPP software, the Power PC processor, the system clock, the 
Ethernet controller, the compact flash card controller, and the 
RS232 controller. The Component Under Test (CUT) is the 
TRAPP software. Specifically, various modifications to the 
software execution flow will be compared to the baseline 
software architecture.  

The performance metrics of the system consist of the time 
required to process a packet and the probability of successful 
intercept of a packet. The system parameters consist of the size 
of the list of interest used by the system, network speed, the 
software configuration of the TRAPP system, and the number 
and types of P2P protocols supported by the system. Workload 
parameters include the type of BitTorrent Packet used, the type 
of SIP packet used, and the total network utilization as a 
percentage of network capacity.  
 
 



 

 
Figure 3. The TRAPP Forensic Tool System  
 
C. Performance Metrics  
In order for the system to be effective, it must have a high 

probability of successfully intercepting, processing, and 
recording those packets on the network that belong to a P2P 
protocol supported by the system, and whose identifiers are on 
the lists of interest. By extension, in order for the system to 
successfully intercept these packets of interest, it must have the 
capability to analyze all traffic on a network, which necessitates 
the requirement of processing each packet as quickly as possible 
for a given set of parameters. Thus, the following performance 
metrics are defined:  

• Packet Processing Time: The number of CPU cycles, as 
measured by the Power PC processor’s System Timer, that 
are required to accomplish the following: determine if a 
packet has been received by Ethernet controller, inspect the 
packet for P2P protocols, match the packet’s identifier 
against the appropriate list, record the packet if necessary, 
and make the Ethernet controller available to receive 
another packet entering the system.  

• Probability of Packet Intercept: The probability of a 
packet, whose format matches a P2P protocol supported by 
the system, and whose identifier matches an entry on a list 
of interest, being successfully recorded in the system 
intercept log.  

 
D. System Parameters  
• Size of List of Interest: This is the size of the list of interest, 

expressed by the number of entries in the list. For the 
BitTorrent protocol, an entry is a 160-bit file info hash. For 
the SIP protocol, an entry is the first 12 digits of a SIP URI. 
Because the system uses a binary search algorithm to 
perform the hash/SIP URI matching process, each doubling 
of the list size will add a maximum of one comparison to 
the total algorithm execution time. For this research, a 
sample list size of 1000 entries is used for both the file info 
hash list and the SIP URI list.  

• Network Speed: This is the maximum speed of network 
data entering the system through the Ethernet connection. 
The Ethernet controller on the Xilinx II Pro board used in 
this research is capable of connecting to either a 10 Mbps or 
a 100 Mbps network. For this research, the 100 Mbps 
connection option is used.  

• TRAPP Software Configuration: The software code used to 
execute TRAPP functions using the Power PC processor on 
the FPGA. As procedures and features contained in the 
software are added, removed, or modified, the overall 
functions and performance of the system are affected.  

• Peer-to-Peer Protocols Supported: This is the set of P2P 

protocols that the system is capable of detecting and 
analyzing. For the first experiment, the BitTorrent protocol 
is the only member of this set. In the second experiment, 
the Session Initiation Protocol is added to the set.  

 
E. Workload Parameters  
• BitTorrent Packet Type: In this study, three different types 

of BitTorrent packets are used: a BitTorrent Handshake 
packet whose file info hash matches an entry on the list of 
interest, a BitTorrent Handshake packet whose file info 
hash does not match an entry on the list of interest, and a 
packet that is not a properly formatted BitTorrent 
Handshake packet.  

• SIP Packet Type: Three different types of SIP packets are 
used in this study: a SIP INVITE packet whose TO and 
FROM SIP URIs match an entry on the list of interest, a 
SIP INVITE packet whose TO and FROM SIP URIs do not 
match an entry on the list of interest, and a SIP BYE packet 
whose TO and FROM SIP URIs match an entry on the list 
of interest.  

• Network Utilization: This is the total amount of traffic 
entering the system. For the first test, the network 
utilization is limited to single packets injected into the 
system to measure the time required to fully process the 
packet. For the second test, a 1.1 gigabyte video file is 
transferred from one node on the network to another node 
on the network using the Windows NETBIOS file transfer 
protocol to generate a non-P2P traffic load. This transfer 
injects a load of between 89.6 Mbps and 89.7 Mbps into the 
system, which equates to approximately a 90% utilization 
of the 100 Mbps Ethernet connection. For the third test, a 
continuous stream of identical P2P packets of interest is 
injected into the system, with the network utilization 
varying with the type of P2P packet.  

 
F. Configuration  
The software configuration is the factor designated as the 

Component Under Test. It controls all aspects of the system, 
including what information is provided to the user, how 
network data is captured and analyzed, and how packets of 
interest are stored. The six levels chosen for this factor are 
detailed below.  

1) Control Configuration: The system is implemented as an 
embedded software application using the Power PC core on the 
Virtex II Pro FPGA development board. Xilinx-provided 
drivers and built-in functions are used where possible, with 
custom software built to accomplish the following functions: 
read the data file containing the file info hashes of the list of 
interest, perform packet payload inspections, copy BitTorrent 
Handshake frames to on-chip RAM, perform the hash match-
ing, and write the frame data to the log file on the compact flash 
card.  

Listed below are the salient features of the Control 
configuration:  

• All modules are executed in software. The only hardware 
modification made is to enable the Ethernet controller to 
operate in promiscuous mode.  

• To simplify the software code as much as possible, the 
Ethernet controller is limited to one receive buffer, caching 
is not used, and no user alerts are generated for the user.  

• Packets of interest are copied three times. The first copy is 
from the Ethernet controller buffer to block RAM upon 



 

detection of the 32-bit BitTorrent signature in the packet’s 
payload. If the file info hash is found on the list, the frame 
is copied from RAM to a character array, and then from the 
array to the log file on the compact flash card.  

• Frames are copied to the compact flash card as they are 
processed. The system waits until the current frame has 
been completely processed and sent to the compact flash 
card before beginning to process another frame.  

2) User Alerts Configuration: This modification adds to the 
system user notifications, via the serial port, of any P2P control 
packets that are found by the system. The messages consist of 
the type of P2P packet found, whether the file info hash matches 
an entry on the list of interest, and the file info hash’s position 
on the list of interest. Because the serial port runs at a much 
lower speed than the CPU and the processing bus, it is 
hypothesized that sending any data over the RS232 connection 
causes a dramatic slowdown in overall processing time.  

3) Packet Write Configuration: In this modification, all 
captured packets of interest are stored within a RAM block 
instead of writing them individually to the compact flash card. 
When the system is shut down, all data are then transferred from 
the block RAM to the compact flash card. By storing the data 
within RAM, the only write functions to the compact flash card 
are performed before packet sniffing begins and after packet 
sniffing terminates. It is hypothesized that writing to the 
compact flash card is a high-latency process, and that its 
removal will result in a significant processing time savings.  

4) Dual Buffer Configuration: This modification adds a 
second receive buffer to the Ethernet controller [23]. This 
allows one frame to be read and processed while another frame 
is received. The goals for this optimization are to give the 
comparison and copying routines additional time to execute, 
and limit the number of frames dropped due to a full receive 
buffer.  

5) Cache Configuration: This modification enables the 
instruction and data caches for the Power PC processor. By 
allowing the FPGA to cache processor instructions, heap data, 
and stack data instead of performing multiple reads and writes 
to block RAM, a significant amount of processing time should 
be saved.  

6) Combined Configuration: This is the combined case of the 
CUT incorporating the Packet Write, Dual Buffer, and Cache 
optimizations into a single system. The goal for the integration 
is to take advantage of each optimization individually and to 
possibly gain synergistic time savings from the combination of 
all four optimizations.  

 
G. Experimental Environment  
To conduct the two experiments, the experimental setup 

shown in Figure 4 is created. The experimental environment 
consists of the following components:  

• One Cisco Catalyst 2900XL 100 Mbps switch configured 
with 22 standard ports and 2 spanning ports.  

• Two Dell Inspiron Windows XP Service Pack 2 laptops 
loaded with �Torrent 1.7.7 [24], a popular BitTorrent 
client, and X-Lite 3.0 [25], a popular VoIP phone client, 
and connected to the switch.  

• One Dell Inspiron laptop that is dual-equipped with the 
BackTrack 2.0 Linux environment [26] and Windows XP 
Service Pack 2, and is connected to the switch. The 
BackTrack environment contains the hping 3.0.0 [27] 
utility, which is used to inject the crafted BitTorrent and 

SIP packets. The Windows environment contains the 
VMWare 2.0.5 [28] utility to run a TrixBox 2.2 [29] SIP 
proxy and registrar server for use with the X-Lite clients.  

• One Virtex II Pro FPGA system (the SUT), which is 
connected to a spanning port on the switch.  

• One Dell Inspiron Windows XP Service Pack 2 laptop 
loaded with Wireshark 1.0.1 [30], which is connected to a 
second spanning port to act as a packet sniffer for an 
experimental control.  

• One Dell Windows XP Service Pack 2 laptop, which is 
connected to the SUT and is used to configure and load the 
Virtex II Pro via a USB port. The laptop is also equipped 
with TTermPro [31], a HyperTerminal application used to 
receive alerts from the SUT via a RS232 serial port.  

The actual experimental setup used is shown in Figure 5.  
 

 
Figure 4. Block Diagram of the Experimental Setup  
 
 
 

 
Figure 5. Experimental Setup for the Three Performance 

Tests  
 

H. Evaluation Techniques  
Outlined below are the tests used for collecting data on the 

packet processing time and probability of packet intercept 
metrics for each experiment.  

1) Calculating Packet Processing Time: The first test 
consists of a series of packets sent from the Linux laptop to one 
of the Windows laptops via the Cisco switch. For each run, a 
series of 50 crafted packets are sent, and the CPU cycles needed 
by the system to process each packet is recorded.  

A total of 50 identical packets are sent in one second intervals 
through the network. Based on the testing of several different 
sample sizes, 50 packets is the minimum sample size that results 



 

in sufficiently small confidence intervals to perform a 
meaningful comparison between system configurations. To 
ensure the independence of each trial, one second is chosen as 
the interarrival interval. To determine the number of cycles 
required to process each packet received by the system, a Power 
PC System Timer time stamp is taken prior to the beginning of 
the processing, and another time stamp is taken immediately 
after the processing routine ends. To compute the number of 
cycles required to process the packet, the two values are simply 
subtracted from each other. Since the Power PC processor in the 
SUT is configured to run at 300 MHz, to convert the processing 
time from clock cycles to standard time units, the formula (time 
= cycles/300) is used, where cycles is the number of cycles as 
determined by the System Timer and time is the time to process 
the packet in microseconds.  

2) Calculating Probability of Intercept Under a Non-P2P 
Load: The second test consists of a series of packets sent from 
the Linux laptop to one of the Windows laptops via the Cisco 
switch. For this test, however, an additional non-P2P traffic 
load is generated on the network. For this test, the number of 
crafted packets successfully intercepted and processed by the 
system is recorded.  

For each test, a series of three hundred crafted packets are 
injected into the network 500 milliseconds apart. By injecting 
the packets 500 milliseconds apart, the results of each trial 
(either the packet was captured or not captured) are assured to 
be independent of each other. Based on the testing of several 
different sample sizes, 300 packets is a good sample size to 
produce a binomial distribution that results in sufficiently small 
confidence intervals to perform a meaningful comparison 
between system configurations. Again, to ensure the 
independence of each trial, i.e., to ensure that the system is not 
processing one crafted packet when another one arrives at the 
system, the packets are sent 500 milliseconds apart.  

3) Calculating Probability of Intercept Under an All-P2P 
Load: The third test also consists of a series of packets sent from 
the Linux laptop to one of the Windows laptops via the Cisco 
switch. As in the first test, a series of crafted packets are sent 
across the network. However, for this test, the packets are sent 
as quickly as possible from the Linux laptop using the hping 
--flood switch.  

In order to determine how many packets were sent by the 
Linux laptop, a particular feature of the hping program is 
exploited. When the hping program sends a series of packets, 
each packet contains a different source port, and the source port 
number is incremented by one each time a packet is transmitted. 
Thus, for a given series of packets, the total number of packets 
sent in the series can be calculated by subtracting the first 
packet’s source port number from the last packet’s source port 
number.  

In this test several thousand packets are sent over the network 
as quickly as possible using hping and the flood is then 
terminated manually. To determine the probability of packet 
intercept, the following procedure is used:  

1) Inspect the capture log file and record the number of 
frames successfully captured by the system.  

2) Record the source port number of the first packet in the log 
file, and the source port number of the last packet in the 
log file.  

3) Compute the probability of packet intercept using 
(ݐ݌݁ܿݎ݁ݐ݊݅ ݐ݁݇ܿܽ݌)ܲ  =  ௡௨௠௕௘௥ ௢௙ ௣௔௖௞௘௧௦ ௜௡ ௟௢௚௉௢௥௧(௟௔௦௧ ௣௔௖௞௘௧)ି ௉௢௥௧(௙௜௥௦௧ ௣௔௖௞௘௧) (1) 

 
When performing these tests, another important parameter is 

the network utilization or network load. To determine the 
minimum overall network load, the Wireshark utility on the 
laptop that is connected to the second spanning port is used to 
analyze all traffic sent during the test. At the conclusion of the 
test, a capture summary is extracted, and the Average MBit/sec 
value is recorded. Because Wireshark itself may not capture all 
packets on the network, this value is assumed to be the minimum 
network traffic load.  
 

IV. RESULTS AND ANALYSIS  
 

A. Results and Analysis of Experiment 1 -BitTorrent  
1) Test 1: Calculating Packet Processing Time: The first test 

performed on the system is used to determine how many CPU 
cycles are required to process each type of packet. Outlined 
below are the results of the Calculating Packet Processing Time 
test.  

a) Non-P2P Packet Workload: Table I shows the results 
of a one-variable t-test performed on each of the six 
configurations using the Non-P2P packet type. The table gives 
the mean number of CPU cycles required to process the 
non-P2P packet, the standard deviation, and a 95% confidence 
interval for the mean. As shown in the table, the number of 
cycles required ranges from 276 cycles to 1,344 cycles, which 
equates to a range of 0.92 to 4.48 microseconds per packet.  
 
Table I.  Packet Processing Times for Non-BitTorrent Packets  

Configuration Mean Standard 
Deviation 

Confidence Interval 
(95%) 

Control  1206.00 0.00  (1206.00, 1206.00)  
User Alerts  1152.00 0.00  (1152.00, 1152.00)  
Dual Buffer  1344.00 109.10  (1313.00, 1375.00)  
Packet Write 1146.00 0.00  (1146.00, 1146.00)  

Cache  276.00  0.00  (276.00, 276.00)  
Combined  303.50  25.76  (296.18, 310.82)  

 
b) BitTorrent Packet Not On the List Workload: Table II 

shows the results of a one-variable t-test performed on each of 
the six configurations using the BitTorrent Packet Not On the 
List packet type. As shown in the table, the number of cycles 
required ranges from 1,145 cycles to 7,770 cycles, which 
equates to a range of 3.82 to 25.90 microseconds per packet.  

 
Table II.  Packet Processing Times for BitTorrent Packets Not 
on the List  

Configuration Mean Standard 
Deviation 

Confidence Interval 
(95%) 

Control  7296 0.00  (7296, 7296)  
User Alerts  1044756 730  (1044549, 1044963) 
Dual Buffer  7770 0.00  (7770, 7770)  
Packet Write 7593 0.00  (7593, 7593)  

Cache  1145 0.00  (1145, 1145)  
Combined  1205 0.00  (1205, 1205)  

 
c) BitTorrent Packet On the List Workload: Table III 

shows the results of a one-variable t-test performed on each of 
the six configurations using the BitTorrent Packet On the List 
packet type. As shown in the table, the number of cycles 
required ranges from 3,783 cycles to 118,986 cycles, which 
equates to a range of 12.61 to 396.62 microseconds per packet.  

 
 
 



 

Table III.  Packet Processing Times for BitTorrent Packets on 
the List  

Configuration Mean Standard 
Deviation 

Confidence Interval 
(95%) 

Control  116207  22418  (109836, 122578)  
User Alerts  1702125  22880  (1695623, 1708628) 
Dual Buffer  118986  22391  (112623, 125350)  
Packet Write  23292  318  (23202, 23382)  

Cache  14679  2064  (14093, 15266)  
Combined  3783  75  (3762, 3805)  

 
Analyzing this data, the following observations are made 

about the results of the first test:  
• For the two BitTorrent packet workloads, messages to the 

user are sent in the User Alert configuration, resulting in a 
several order of magnitude increase in processing time. 
This increase is due to the fact that the user alerts are 
transmitted via serial port at 115,200 baud, which is 
significantly slower than the 300 MHz processor speed and 
100 MHz bus speed used by the FPGA board. Based on this 
significant increase in packet processing time, and the 
corresponding decrease in overall system performance, all 
user alerts are eliminated from the final design.  

• Adding a second receive buffer results in more CPU cycles 
required to process a packet, regardless of the type of 
packet. This is due to the additional processing cycles 
required to check both receive buffers in order to determine 
which one contains the next packet to be processed. 
However, as shown in Section IV.A.2, though this 
modification increases processing time, the second 
Ethernet receive buffer also increases the system’s overall 
probability of packet intercept.  

• As expected, the modification to the packet writing routine 
only decreases the packet processing time when packets are 
actually written to the log file. For the cases where packets 
are not written, no significant processing time is gained or 
lost with this optimization.  

• Enabling the caches results in a significant decrease in CPU 
cycles required to process a packet, regardless of packet 
type.  

2) Test 2: Calculating Probability of Intercept Under a 
Non-P2P Load: Table IV shows the results of the packet 
intercept test under a heavy non-P2P network load. For each 
configuration tested, the number of packets captured out of the 
300 sent is shown. The table also shows the probability of 
packet intercept and the corresponding 95% confidence interval 
for each configuration. In all tests, the total load on the network 
is measured by the Wireshark packet sniffer to be between 89.6 
Mbps and 89.7 Mbps, which equates to an 89.6% load on the 
100 Mbps network. However, this measurement is not absolute, 
as the Wireshark program itself can drop packets under a heavy 
load. Since it is unknown how many packets were dropped by 
Wireshark, 89.6% is considered to be the minimum load on the 
test network.  
 
 
 
 
 
 
 
 
 

Table IV.  Probability of Packet Intercept Under a Non-P2P 
Workload  

Configuration 
Packets 

Captured 
(Events) 

Packets 
Sent 

(Trials) 

Probability 
of Packet 
Intercept 

Confidence 
Interval (95%) 

Control  159  300 0.5300 (0.4718, 0.5876) 
User Alerts  166 300 0.5533 (0.4951, 0.6105) 
Dual Buffer  292 300 0.9733 (0.9481, 0.9884) 
Packet Write 174 300 0.5800 (0.5219, 0.6365) 

Cache  289 300 0.9633 (0.9353, 0.9816) 
Combined  300 300 1.0000 (0.9901, 1.0000) 
Wireshark 298 300 0.9933 (0.9761, 0.9992) 
 
Table IV shows that while the User Alerts and Packet Write 

configurations capture more packets of interest than the Control 
(166 and 174 versus 159), the overlapping confidence intervals 
suggest that the differences are not statistically significant. The 
table also shows that the Cache and Dual Buffer configurations 
perform significantly better than the Control. Moreover, the 
Combined configuration performs better than the other five 
configurations (300 out of 300 packets captured), returning a 
test result of 100% probability of packet intercept for packets of 
interest, which is comparable to the 99% capture rate of the 
Wireshark packet sniffer.  

To further determine the statistical significance of these 
results, hypothesis tests are performed between the various 
optimizations versus the Control configuration. The p-value for 
the one-sided test involving the User Alerts and the Control is 
too high (0.283) to state with confidence that the increase in 
probability of packet intercept is statistically significant. In the 
one-sided test involving the Packet Write optimization and the 
Control, again the p-value is too high (0.109) to accept the 
alternative hypothesis, but it can be inferred that the 
optimization did provide some improvement to the probability 
of packet intercept. For the Cache, Dual Buffer, and Combined 
configurations, the p-value for the one-sided test is 0.000, 
indicating a strong statistical certainty that these configurations 
are better than the Control configuration.  

To determine the overall performance of the Combined 
configuration, another set of hypothesis tests are performed 
between the Combined configuration versus the individual 
optimizations and Wireshark. The p-value for the one-sided 
tests involving the User Alerts, Packet Write, Cache, and Dual 
Buffer optimizations ranges between 0.000 and 0.002, 
indicating a strong statistical certainty that the Combined 
configuration is better than each individual optimization by 
itself. When the Combined configuration is compared to the 
performance of Wireshark, the p-value for the one-sided test is 
0.078, which is too high to accept the alternative hypothesis that 
the Combined configuration performs better than Wireshark, 
but does indicate that the probabilities of packet intercept of the 
two are comparable.  

Analyzing this data, the following observations are made 
about the results of the second test:  

• Adding User Alerts to the system has no statistical impact 
on the probability of packet intercept, positive or negative. 
However, given the vast increase in packet processing time 
associated with messages sent to the user (5,673.8 
microseconds with the User Alerts versus 387.4 without 
User Alerts), their removal is still justified in the final 
system design. This point is discussed further in Section 
IV.C.  

• The alternate Packet Writing scheme does not, by itself, 
significantly improve overall system performance. 



 

However, this optimization, when combined with other 
improvements, does provide some benefit to the Combined 
configuration’s performance.  

• The optimizations that enable the caches and the second 
receive buffer each have a significant positive impact on 
overall system performance. For each optimization, system 
performance increased over 80% from the Control 
configuration.  

• The combination of all three optimizations returned the 
best performance of any configuration. Even with the 
additional processing required to analyze all packets on the 
network for the BitTorrent protocol signature, the system 
returned similar performance to the dedicated 
software-based packet sniffer, Wireshark.  

 
3) Test 3: Calculating Probability of Intercept Under an 

All-P2P Load: Table V shows the results of the packet intercept 
test under an all-P2P network load. For each configuration 
tested, the number of BitTorrent Handshake packets that are 
sent over the network in order for the system to capture 400 of 
them is shown in the table. The table also shows the probability 
of packet intercept and the corresponding 95% confidence 
interval for each configuration. In all tests, the total load on the 
network is measured by the Wireshark packet sniffer to be 
between 23.35 and 24.10 Mbps, which equates to 
approximately a 23.3% load on the 100 Mbps network. This is 
the maximum network throughput possible using the hping 
utility and the BitTorrent Handshake workload.  

Table V shows that the only configuration that performs 
worse than the Control is the User Alerts configuration (3.4% 
capture rate for Control versus 1.5% capture rate for User 
Alerts). The Cache and Dual Buffer configurations perform 
slightly better than the Control, but still are only able to capture 
less than 12% of packets sent. The Packet Write configuration 
performs moderately better than the Control (40.4% versus 
3.4% capture rate), but it is still unable to capture more than 1 in 
2 packets. Finally, the Combined configuration performs 
significantly better than the other five configurations (400 out of 
400 packets captured), returning a test result of 100% 
probability of packet intercept and comparing very favorably 
with Wireshark’s result of 99.0%.  
 
Table V.  Probability of Packet Intercept Under an All-P2P 
Workload  

Configuration 
Packets 
Sent 
(Trials) 

Probability 
of Packet 
Intercept 

Confidence 
Interval 
(95%) 

Control  11757  0.0340  (0.0308, 0.0375) 
User Alerts  26810  0.0149  (0.0135, 0.0164) 
Dual Buffer  9188  0.0435  (0.0395, 0.0479) 
Packet Write  990  0.4040  (0.3733, 0.4354) 
Cache  3599  0.1111  (0.1011, 0.1219) 
Combined  400  1.0000  (0.9925, 1.0000) 
Wireshark  404  0.9901  (0.9748, 0.9973) 

 
To further validate the statistical significance of these results, 

hypothesis tests are performed between the various 
optimizations versus the Control configuration. The p-value for 
the one-sided test involving the User Alerts and the Control is 
1.000, which corresponds to the fact that the User Alerts 
configuration actually performed worse than the Control. In the 
one-sided tests involving the other four optimizations, the 
p-value for the one-sided test is 0.000, indicating a strong 
statistical certainty that these configurations have a better 

probability of packet intercept than the Control configuration.  
To determine the overall performance of the Combined 

configuration, another set of hypothesis tests are performed 
between the Combined configuration versus the individual 
optimizations and Wireshark. The p-value for the one-sided 
tests involving the User Alerts, Dual Buffer, Packet Write, and 
Cache optimizations are all 0.000, indicating a strong statistical 
certainty that the Combined configuration is better than each 
individual optimization by itself. When the Combined 
configuration is compared to the performance of Wireshark, the 
p-value for the one-sided test is 0.022, which is low enough to 
accept, with statistical confidence, the hypothesis that 
probability of packet intercept for the Combined configuration 
is higher than the probability of packet intercept using 
Wireshark.  

Analyzing this data, the following observations are made 
about the results of the third test:  

• Adding User Alerts to the system results in a 56% decrease 
in performance, as measured by probability of packet 
intercept. In this case, the vast increase in packet 
processing time associated with messages sent to the user, 
discussed above, is almost certainly the root cause of the 
decrease in performance.  

• The Dual Buffer and Cache optimizations, by themselves, 
modestly improve system performance, but are still unable 
to capture more than 50% of packets of interest. However, 
combining them with the Packet Write optimization 
provides a tremendous benefit to the Combined 
configuration’s performance.  

• The alternate Packet Writing scheme by itself provides a 
moderate improvement to overall system performance. The 
full benefit of this optimization is seen when combined 
with caching and an improved Ethernet receive buffer.  

• The combination of all three optimizations (Cache, Dual 
Buffer, and Packet Write) has a synergistic effect on the 
overall performance of the system when processing 
back-to-back BitTorrent packets. By themselves, each 
optimization returned moderate performance gains over the 
Control configuration. When combined, however, they 
created a system that is able to achieve a 100% probability 
of packet intercept, which is comparable to the dedicated 
software packet sniffer, Wireshark. 

Overall, the Combined configuration is clearly the best of the 
possible configurations for the CUT. The Combined 
configuration consistently returned very low packet processing 
times, indicating that it is able to process a variety of packets 
faster than any individual optimization. The Combined 
configuration also returned the highest values in both 
probability of packet intercept tests, indicating that it has a 
higher probability of intercepting packets of interest in both 
non-P2P and all-P2P workload environments than any of the 
other optimizations. Finally, using a 95% confidence interval, 
the Combined configuration returns a minimum capture rate of 
99.0% across all workloads, which is comparable to the 
performance of Wireshark, which returned a minimum capture 
rate of 97.5%.  

 
B. Results and Analysis of Experiment 2 -BitTorrent and SIP  
1) Test 1: Calculating Packet Processing Time: Table VI 

shows the results of a one-variable t-test performed on the 
Optimized (BT + SIP) configuration using six different packet 
types. The table gives the mean number of CPU cycles required 



 

to process the workload packet, the standard deviation, and a 
95% confidence interval for the mean. As shown in the table, 
the number of cycles required ranges from 419 cycles to 34,779 
cycles, which equates to a range of 1.40 to 115.93 microseconds 
per packet, depending on the type of packet.  
 
Table VI.  Packet Processing Times for SIP and BitTorrent 
Packets Using the Expanded System  

Configuration Mean Standard 
Deviation 

Confidence Interval 
(95%) 

Not P2P 418.6 36.0 (408.4, 428.4) 
BT Not on List 1323.5 31.8 (1314.5, 1332.5) 
BT Handshake 3883.0 85.6 (3858.7, 3907.4) 
SIP Not on List 19450.0 97.8 (19422.2, 19477.8) 
SIP BYE 29951.3 224.2 (29887.6, 30015.0) 
SIP INVITE 34778.6 226.2 (34714.3, 34842.9) 

 
Analyzing this data, the following observations are made 

about the results of the first test:  
• Adding SIP processing capability to the SUT results in a 

higher packet processing time for both non-P2P and 
BitTorrent Handshake packets. This is due to the additional 
processing required by the system to determine if a packet 
belongs to either the BitTorrent or SIP protocols, as 
opposed to looking for only BitTorrent packets.  

• The packet processing time required for any SIP packet is 
several times longer than the time required to process 
BitTorrent packets. The reasons for this increase in 
processing time are explained in Section IV.C.  

2) Test 2: Calculating Probability of Intercept Under a 
Non-P2P Load: Table VII shows the results of the packet 
intercept test under a heavy non-P2P network load using the 
modified Optimized (BT + SIP) configuration. For each of the 
three P2P packet types tested, the number of packets captured 
by the system out of the 300 sent is shown. For comparison 
purposes, the number of packets captured by the Wireshark 
packet sniffer for each workload is also shown. In addition, the 
table shows the probability of packet intercept and the 
corresponding 95% confidence interval for each workload.  
 
Table VII.  Probability of Packet Intercept for BitTorrent and 
SIP Packets Under a Non-P2P Workload  

Workload 
Packets 
Captured
(Events) 

Probability 
of Packet 
Intercept 

Confidence 
Interval  
(95%) 

BT Handshake 300 1.0000 (0.9901, 1.0000) 
Wireshark BT 298 0.9933 (0.9761, 0.9992) 
SIP BYE 300 1.0000 (0.9901, 1.0000) 
Wireshark BYE 300 1.0000 (0.9901, 1.0000) 
SIP INVITE 298 0.9933 (0.9761, 0.9992) 
Wireshark INVITE 300 1.0000 (0.9901, 1.0000) 

 
The modified Optimized (BT + SIP) configuration performed 

perfectly (300 out of 300 packets captured) for two out of the 
three workloads, and returned a 99% probability of packet 
intercept for the other. This performance compares very 
favorably with the results returned by the Wireshark packet 
sniffer, which also returned a test result of near-100% 
probability of packet intercept for packets of interest.  

Analyzing this data, the following observations are made 
about the results of the second test:  

• The probability of packet intercept performance of the 
system is unchanged when processing BitTorrent 
Handshake packets. Regardless of whether the SUT is 
processing a single BitTorrent Handshake packet amid a 

high non-P2P network load or a steady stream of 
Handshake packets, the system is able to achieve a 100% 
probability of packet intercept. In addition, the SUT 
performs slightly better than the Wireshark packet sniffer, 
regardless of the overall workload.  

• When processing SIP BYE packets, the SUT sees a 9% 
decrease in probability of packet intercept when processing 
the packets back-to-back over processing a single packet 
amid a high non-P2P network load. The extended packet 
processing time required for this type of packet causes the 
system to occasionally drop the next frame entering the 
SUT because it is still processing the current SIP frame in 
the Ethernet receive buffer. The Wireshark packet sniffer, 
however, returns perfect scores regardless of workload 
type. 

• When processing SIP INVITE packets, the SUT sees a 
33.8% decrease in probability of packet intercept when 
processing the packets back-to-back over processing a 
single packet amid a high non-P2P network load. The 
reason for this is the same as that for the SIP BYE packet. 
However, the SIP INVITE packet, due to its larger overall 
packet size, requires a longer packet processing time than 
the BYE packet, resulting in a lower probability of packet 
intercept than that of the SIP BYE packet. Wireshark, 
however, does not suffer from this problem, returning a 
probability of packet intercept of at least 99.7% for both 
workloads.  

3) Test 3: Calculating Probability of Intercept Under an 
All-P2P Load: For each of the three all-P2P workloads 
(BitTorrent Handshake, SIP INVITE, and SIP BYE), the total 
load on the network is measured by the Wireshark packet 
sniffer, and the results shown in Table VIII. The low maximum 
network load for the BitTorrent Handshake packet workload, 
which is also seen in the first experiment, is likely due to the fact 
that the BitTorrent peer wire protocol runs on top of TCP. Both 
the exponential backoff mechanism and the reliable data 
transfer features of TCP add additional time between packets 
sent over the network, causing a decrease in the maximum 
throughput that the hping program can achieve. The SIP 
INVITE and BYE packets, on the other hand, use UDP, which 
allows hping to achieve a throughput of over 94 Mbps on the 
100 Mbps network.  
 
Table VIII.  Observed Network Load for Various All-P2P 
Workloads  

Configuration  Network Load (Mbps)  
BitTorrent Handshake  23.35  
SIP BYE  94.61  
SIP INVITE  96.28  

 
Table IX shows the results of the packet intercept test under 

an all-P2P network load. For each P2P packet type tested, the 
number of workload packets that were sent over the network in 
order for the system to capture 400 of them is shown. For 
comparison purposes, the number of packets captured by the 
Wireshark packet sniffer for each workload is also shown. In 
addition, the table shows the probability of packet intercept and 
the corresponding 95% confidence interval for each 
configuration.  
 
 
 
 



 

 
Table IX.  Probability of Packet Intercept for BitTorrent and 
SIP Packets Under an All-P2P Workload  

Workload 
Packets 
Sent 
(Trials) 

Probability 
of Packet 
Intercept 

Confidence 
Interval 
(95%) 

BT Handshake 400 1.0000 (0.9901, 1.0000) 
Wireshark BT 404 0.9901 (0.9748, 0.9973) 
SIP BYE 440 0.9091 (0.8783, 0.9343) 
Wireshark BYE 400 1.0000 (0.9901, 1.0000) 
SIP INVITE 608 0.6579 (0.6187, 0.6956) 
Wireshark INVITE 401 0.9975 (0.9862, 0.9999) 

 
Both the SUT and Wireshark perform very well under the 

BitTorrent Handshake packet type, returning a probability of 
packet intercept of over 99%. For the SIP BYE packet type, the 
SUT returns a probability of packet intercept of just over 90%, 
while Wireshark returns a perfect score of 100%. Finally, for 
the SIP INVITE packet type, the SUT achieves a 65.8% 
probability of packet intercept, while Wireshark performs much 
better, returning a near-perfect score of 99.8%.  

 
C. Overall Analysis  
1) Analysis of Packet Processing Time: The first step in the 

research methodology is to find a system configuration that 
requires the minimum number of CPU cycles to process packets 
entering the system. Based on the results presented here, the 
most significant improvement to system speed occurs when the 
data and instruction caches are enabled for the Power PC 
processor. By allowing the FPGA to cache both processor 
instructions and heap and stack data, packet processing time is 
reduced by 77% to 87%, depending on the type of packet. In 
addition, by delaying the compact flash write operations until 
after the termination of system processing, the packet 
processing time is reduced by 80% for packets written to the log 
file. When all four optimizations are combined, the resulting 
Combined configuration achieves a 75% to 92% reduction in 
processing time of packets of interest over the Control 
configuration, depending on the type of packet. Therefore, the 
Combined configuration is confirmed to be the best system 
configuration for minimizing the overall packet processing time 
for all packets entering the system.  

When the ability to process SIP packets is added to the 
system, the mean packet processing time required to process 
non-P2P packets increases by 115 cycles (0.38 microseconds) 
and the time required to process BitTorrent Handshake packets 
increases by 100 cycles (0.33 microseconds). This increase in 
packet processing time is due to the additional software code 
required to check each packet for the signature of a SIP control 
packet as well as the signature of a BitTorrent Handshake 
packet.  

2) Analysis of Probability of Packet Intercept Under Load: In 
the first experiment, the overall goal is to find the configuration 
that returns the highest probability of packet intercept for both 
non-P2P and all-P2P workloads. In the non-P2P case, where a 
single BitTorrent packet is sent while the network is under a 
heavy NETBIOS file transfer load, the Dual Buffer 
optimization returns a capture rate of over 95%, while the single 
buffer configurations (with the exception of the Cache 
configuration, discussed below) all return capture rates of less 
than 60%. This significant packet loss rate for the single receive 
buffer configurations is likely due to the inability of a non-P2P 
frame to be processed and cleared from the buffer before the 
BitTorrent Handshake packet arrives at the system. At 100 

Mbps, the mandatory inter-frame gap required by the Ethernet 
protocol results in a 0.96 microsecond delay between the end of 
one frame and the beginning of the next. Since the system 
processes instructions at 300 MHz, it is able to perform at most 
300 instructions per microsecond. Therefore, because multiple 
instructions are required to transfer data from the Ethernet 
buffer, read the payload contents, and analyze the data, the 
system cannot keep up with the data flow, resulting in 
significant packet loss as the system approaches 100% 
utilization. However, note that the Cache optimization is the 
exception to this observation; even with a single buffer, 
enabling the caches results in a capture rate of 96%. This is 
likely due to the fact that the extremely small processing times 
provided by the cache enable a packet to be processed in the 
short interframe time gap.  

Adding a second receive buffer to the Ethernet controller 
dramatically increases the probability of packet intercept under 
a non-P2P workload, achieving a 97% capture rate even with no 
other optimizations incorporated. The use of two receive buffers 
allows a non-P2P packet to be processed from one buffer while 
the BitTorrent Handshake packet is being received in the second 
buffer. Specifically, the additional buffer provides a minimum 
of 576 additional bit times ((7-byte preamble + 1-byte delimiter 
+ 64-byte minimum frame size) x 8 bits per byte) for the 
processing of the non-P2P frame over the single buffer option 
[32]. Although this improvement comes at the cost of additional 
processing cycles, the expanded processing window provided 
by the second buffer more than offsets the cost in individual 
packet processing times. When combined with caching and the 
improved packet writing scheme, the infrequency of packets of 
interest, and the small likelihood of traffic saturation on the 
network link, the final Combined configuration allows the 
system to successfully capture and process all BitTorrent 
packets of interest sent into a network with a high non-P2P 
traffic load.  

For the situation where BitTorrent Handshake packets are 
sent to the system back-to-back, as in the case of the all-P2P 
workload, each system optimization returns a much different 
probability of packet intercept. Using this workload, only the 
Packet Write optimization results in a greater than 40% 
probability of packet intercept; the other three optimizations all 
return capture rates of less than 15%. These low capture rates 
are due to the increased packet processing time required for 
BitTorrent packets over non-P2P packets. When all four 
optimizations are used together, the resulting Combined 
configuration is able to achieve a 100% probability of packet 
intercept for BitTorrent Handshake packets that are received 
back-to-back by the SUT, which is comparable to the results for 
the dedicated Wireshark packet sniffer.  

When the ability to process SIP packets is added to the 
system, the overall system performance is unchanged when 
processing single packets of interest under a high non-P2P 
network load. Regardless of P2P packet type (BitTorrent 
Handshake, SIP INVITE, or SIP BYE), the system returns at 
least a 97.5% probability of packet intercept. This performance 
is comparable to that of the Wireshark packet sniffer, which 
also returned a minimum 97.5% probability of packet intercept.  

However, when the system is tasked with processing back-
-to-back P2P packets arriving at near-line speed, the system’s 
performance depends greatly on the type of P2P packets 
arriving at the SUT. For the BitTorrent Handshake packet 
workload, the system still returns a probability of packet 



 

intercept of 100%, which is unchanged from the non-SIP 
processing system. When processing back-to-back SIP BYE 
packets, the probability of packet intercept drops to 90.9%, and 
when processing back-to-back SIP INVITE packets, the 
probability of packet intercept drops further to 65.8%. These 
results are expected, since the packet processing time of a SIP 
BYE packet is much greater than that of a BitTorrent 
Handshake packet, and the packet processing time of a SIP 
INVITE packet is greater than that of a SIP BYE packet. Thus, 
for the case where the system receives back-to-back packets of 
interest, the probability of successfully intercepting both 
packets is at least 90% for BitTorrent Handshake and SIP BYE 
packets, and is less than two-in-three for SIP INVITE packets. 
In comparison, the Wireshark packet sniffer achieved a 
probability of packet intercept of greater than 99% for all three 
packet types, which is likely due to the fact that Wireshark does 
not perform any extraction or comparison of payload data in the 
frames it collects.  

 
V. CONCLUSIONS AND FUTURE WORK  

A. Conclusions of Research  
This paper presents an optimized FPGA-based system that 

analyzes traffic on a network in real time, detects selected P2P 
protocols, compares the digital information being shared 
against a list of interest, and in the case of a match, records 
selected control frames from the P2P session in a log file. With 
one exception, across all types of P2P packets tested, the system 
captures packets of interest with an intercept probability of at 
least 97.6% under an 89.6 Mbps network load. In the rare case 
where the system is processing packets at a rate of over 94 
Mbps, and it receives two SIP control packets in a row, the 
intercept probability decreases to 66%.  

Optimizations to the system return varying changes to the 
probability of packet intercept for packets of interest, ranging 
from an increase of 4.4% for the User Alerts to an increase of 
89% for the Combined configuration over the original system 
design, further justifying the Combined configuration’s use for 
the final optimized design. Using the Combined configuration, 
the optimized system is able to capture a packet of interest with 
a probability of packet intercept of at least 99.0%, using a 95% 
confidence interval and given an 89.6 Mbps network utilization.  

 
B. Significance of Research  
This research provides network administrators with a unique 

method of detecting and tracking both illicit file sharing and 
VoIP phone call patterns. This system differs from other 
methods of tracking illicit file sharing in that it is completely 
passive, meaning the system transmits absolutely no 
information into the network being monitored, making it 
completely invisible to users of the network. By designing the 
system to be completely self-contained on an FPGA, the 
TRAPP system can be easily and inexpensively implemented 
on any LAN. The simplicity of the system enables it to run at 
very high speeds, even when monitoring a heavily utilized 
network. Because the tool operates on a spanning port of the 
network gateway, any failure of the TRAPP system will have no 
negative impact on the network’s performance. Finally, the 
system can be easily expanded to include additional P2P 
protocols with minimum impact on overall system 
performance.  

 
C. Recommendations for Future Research  

The next logical step for this research is to determine how the 
system performs on a more robust network. Specifically, the 
TRAPP system should next be tested on a gigabit Ethernet 
network using a more advanced FPGA board that contains both 
a faster processor and a gigabit Ethernet controller, such as the 
Virtex 5-series FPGA [33]. Another area for future research is 
addressing the encryption and obfuscation capabilities of P2P 
networks. The next version of TRAPP should be able to detect 
P2P control packets that have been obfuscated or encrypted, and 
the relevant data extracted. Future research should also 
investigate how much larger data sets affect the overall 
performance of the TRAPP system.  
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