

Adam R. Bryant
1, 2

, Robert F. Mills
2
, Gilbert L. Peterson

2
 and Michael R. Grimaila

2

1Human Effectiveness Directorate, Air Force Research Laboratory,

Wright-Patterson Air Force Base, Ohio, USA 45433

adam.bryant@wpafb.af.mil

2Center for Cyberspace Research, Air Force Institute of Technology,

Wright-Patterson Air Force Base, Ohio, USA 45433

robert.mills@afit.edu, gilbert.peterson@afit.edu, michael.grimaila@afit.edu

Abstract: Software reverse engineering involves analyzing

computer program executables to understand their structure,

functionality, and behavior. In this paper, common reverse

engineering functions are decomposed to isolate the

information-processing and sensemaking subtasks involved.

This paper reviews the applicable literature on eliciting mental

models of software reverse engineers. Based on the literature, a

taxonomy of common processes is developed which leads to a

methodology to elicit and represent reverse engineers’ mental

models of the tasks.

Keywords: reverse engineering, program understanding,

sensemaking, situation awareness, knowledge engineering

I. Introduction

Software reverse engineering is a type of complex task which

at the surface involves many common features with the

cognitive processes of sensemaking and situation awareness.

In particular, reverse engineering an executable program

requires a person to process and sift through large amounts of

data and integrate that data with extensive specialized

background knowledge [17].

As a first step to isolating and understanding the elements

of sensemaking in software reverse engineering, this paper

reviews existing models of situation awareness and

sensemaking in the context of human comprehension

processes in software reverse engineering. This paper also

describes the application of techniques borrowed from

knowledge engineering and decision making research to study

cognitive processes involved in reverse engineering.

The paper is organized as follows: First, a discussion of the

data representation in a reverse engineering task environment

is presented. Next conceptual models of situation

understanding and sensemaking processes are presented to

outline the major functions of each construct. Next, a

methodology is presented for eliciting and representing

knowledge from reverse engineers to capture (1) the basic

semantics and structure of knowledge required to solve

problems intelligently in the task domain, and (2) behavioral

processes involving sensemaking in the task domain for

further, more refined investigation.

This paper’s original contribution is the synthesis and

refinement of models of sensemaking and situation awareness

with cognitive processes in software reverse engineering.

II. Data Representation in a Reverse

Engineering Task Environment

Reverse engineers analyze programs to discover and correct

implementation flaws in software, to verify and strengthen

security protections in software-based systems, to mitigate

potential attacks on software, or to understand potentially

malicious code [6], [29], [30], [80].

Reverse engineering a program from its executable form

may be required because the source code of the program is not

available. In this case, reverse engineers work with assembly

language representations of programs, and may have to

generate those representations themselves. Analyzing

programs from assembly language is more complicated

because assembly language typically has a one-to-one

mapping with machine code the computer understands, and

thus lacks programming abstractions that exist in higher-level

languages [76].

The benefit of working from only assembly-level

representations is that reverse engineers can develop a very

detailed understanding of the exact behavior of programs they

investigate. This understanding relies on a much smaller

number of unchecked assumptions than learning about a

program from its published application programming

interface or even its source code. In this way, reverse

engineers can collect observable data about how software

actually interfaces with hardware and performs operations. In

fact, many people who reverse engineer programs from binary

representations do not consider an activity reverse

engineering if it means reading source code [17], [29], [30].

1) Assembly Instruction Data

Once a program is compiled, it can contain thousands or

millions of assembly language instructions. These instructions

perform operations on the processor and memory, provide

calls to operating system functions, and access and manipulate

data [74], [27]. On x86-based processors, the assembly

language bytes represent instructions that can be translated by

a disassembler into opcodes such as push, mov, jnz, and call

and register name or memory address operands.

In the x86 instruction set architecture, instruction

mnemonics can be of various lengths [33], so even

disassembling the instructions correctly can prove to be

difficult [71]. Processor architectures may have several ways

to accomplish the same behavior using different assembly

instructions. One instruction opcode may have exactly the

same effects as another seemingly unrelated opcode. Or the

exact effects of two different instructions can be different, but

Software Reverse Engineering

as a Sensemaking Task

BryantAR
Typewritten Text
Bryant, A., Mills, R., Peterson, G. & Grimaila, M. (2012) Software reverse engineering as a sensemaking task. Journal of Information Assurance and Security. 6(6), pp 483--494.

the major effect of the different instructions is the same. For

example, in x86 the nop instruction simply exchanges a

register for itself, an operation with no side effects [33]. Any

other set of instructions with no side effects could be

considered basically the same instruction.

The actual instruction that executes can vary depending on

the instruction prefixes which comprise the first bytes of the

instruction, other bytes within the instruction (such as the mod

R/M byte), or the state of the CPU and settings on bit flag

registers. Additionally, the x86 instruction set architecture

also allows a flexible form of addressing where an instruction

may start at any addressable byte [33], [71]. This means that a

multi-byte instruction might be perceived as one instruction

when read from its first byte, but a different instruction when

read from the second or third byte.

A reverse engineer can step through a disassembled program

in a debugger instruction by instruction or read sequences of

instructions to interpret their meanings. A reverse engineer

can also monitor how the value of register or memory values

change with each instruction, a process called data slicing

[89].

Besides assembly instructions, data from the environment

can include bytes in hexadecimal, control flow sequences,

sequences of system calls, trace data, register values, memory

values, state transition diagrams, graph structures, or text.

Data can also include indications from interfaces with the

program, data traveling over hardware, a system bus, or a

network. It may also consist of operating system data such as

the contents of interrupt vector tables, system call tables, and

process control blocks.

2) Program Data

A string of bytes in a program’s data section may have several

different structural interpretations, depending on how it is

represented and on which byte the disassembler attempts to

begin to interpret the string [41]. The string of bytes could

represent a sequence of instructions, flags to change control

flow, or function call arguments. Data stored in memory

locations, registers, or system objects can be represented as

strings of binary values, integers, floating point values, ASCII

or UNICODE text strings, hexadecimal values, or as parts of

more complex data structures.

Program data can include the state of the processor and the

contents of the registers, memory regions outside of the

process which the program might gain access to, and file or

registry contents which the program may change through

system calls.

3) Visual Data

Another data representation sometimes available to reverse

engineers are functional or control-flow abstractions. A

control-flow graph of a program breaks the program up into

functional components (often basic blocks demarcated by jmp

or call instructions). The graph is a visualization which allows

the user to see connections between the basic blocks. The

ability to see the program in basic blocks can provide visual

cues to help a person divide the program into meaningful

modules. Some tools, such as Hex Rays’ Interactive

Disassembler [28] provide the ability to step through a control

flow graph view as shown in Figure 1.

In addition to control flow visualizations, there are other

visual aspects to reading code. Brooks [8] describes the use of

beacons, which are textual, structural, or visual referents that

help people reading code match up mental representations of

programming structures with actual implementations in the

program.

4) Instrumentation Data

Data from system probes can provide reverse engineers

additional sources of information. Running systems may have

directly observable changes, such as windows that open, files

being created in a folder, or system data structures being

written to. Other system changes can be detected by using

programs or tools to gather the data. If built-in operating

system monitoring tools do not provide enough information

(or are not trusted), reverse engineers can use third-party tools

or write their own tools to support introspection.

Figure 1. Graph-based debugging in IDA Pro (from [28])

Reverse engineering tools can be roughly categorized as

probe tools (or sensors) and control tools. Probe tools provide

information about the program, the operating system,

hardware, and other parts of the system directly. Control tools

change the functionality of the program, system, hardware,

etc. in order to help the reverse engineer gather information.

Both probes and control tools provide the reverse engineer

information about the system and the program under

investigation.

For example, a reverse engineer can run a program to list

running processes and threads before starting an application,

then check which processes have changed after starting it.

Another tool could indicate if a program has encrypted

sections when stored on disk or reconstruct mangled import

functions that a program relies on [32]. Other tools allow

viewing the file header data in a program [44], monitoring and

capturing network packets from a system’s network interface,

or capturing system memory to detect changes to system data

structures [93]. Some can detect and capture other programs

that open and close quickly to avoid being detected [26].

III. Situation Awareness and Understanding

Situation awareness is a term used to describe the degree of a

person’s perception of relevant information elements in their

current task environment, their integration of this information

with their task goals, and their ability to project the state of

these elements into the future [18]. The term is commonly

used to describe a person’s attention to data in the

environment that is relevant to the task at hand, the overall

mission and personal goals [66].

Various methods have been used from the disciplines of

knowledge engineering and human factors psychology to

measure situation awareness and to better understand decision

making in complex environments. Such approaches have been

used to study the cognitive work of pilots [18], air traffic

controllers [73], [19], unmanned aerial vehicle operators [16],

nuclear power plant workers [62], electronic warfare

technicians [47], nurses [14], fire fighters [39], and many

other types of workers. The underlying theme of these

methods is the assumption that when people perform tasks,

their understanding and awareness of what is going on is a

primary input into the decisions they must make in the course

of the task.

Software reverse engineering requires the reverse engineer

to understand the task environment in great detail. These tasks

involve the heavy use and understanding of automated

technologies, namely computer programs. The work is often

security-related and as such can be geared toward determining

whether a system or program should be trusted by other users.

Some human factors studies looked at the link between

subjects’ understanding of a particular technology and their

ability to perform in tasks requiring the technology [67], [68],

[69]. In these studies, the subjects’ understanding of the

technology used made a difference in how well they were able

to work with it. Software reverse engineering tasks leverage

similar situation understanding requirements on reverse

engineers.

There are several measures of situation awareness and

situation understanding, but there is no agreement on

measures that are general across task environments [18], [66],

[81], [82]. Additionally, in many task domains, people

performing tasks with automated systems are actively

engaged with and must interact and provide inputs to the

systems [90].

Often, with highly complex automated systems, the role of

the person using the technology is relegated to a “monitor,

exception handler, and manager of automated resources” [65].

However, awareness and understanding of the “state” of an

automated system like a program requires more than the

passive monitoring of the state variables. For reverse

engineers to gain situation understanding of their task

environment, they have to identify the elements of state

information and comprehend the processes involved in those

programs [65].

IV. Sensemaking

Where situation awareness refers an understanding of

perceptual elements in the environment, sensemaking refers

to the processes that enable one to come to that understanding

and maintain it [40]. Sensemaking is a term used to refer to

humans’ capability to actively comprehend the significance of

ambiguous events and data [92]. The sensemaking process is

typically described as an ongoing integration of knowledge

from a mental model of a situation, available data about the

situation, and perceptual information from the environment. It

is also regarded as the basis for intuitive decision making [39].

Sensemaking is the comprehension process that takes place

when expectations turn out to be incorrect. In a task, when

people do not have to integrate surprising results, their

reasoning and actions are considered operating under business

as usual. However, when they experience surprise, they have

to make sense of the new information. Sensemaking hinges on

instances where data from the environment is inconsistent

with a previous understanding of the world.

The sensemaking process is described by [38] as

integrating what is conjectured with what is known,

connecting what a person infers and actually observes, finding

explanations for ambiguous data, diagnosing ambiguous

symptoms, and identifying problems (Figure 2). Since these

different functions describe a great number of cognitive

capabilities, there is a possibility that sensemaking actually

describes a class of reasoning capabilities encompassing a

number of separate but related process.

Figure 2. Sensemaking Functions Mapped from [38]

During the sensemaking process various cognitive

processes allow a person to simultaneously reason about data

and the semantic meanings in that data [38]. When a person

successfully makes sense of observable data, that person is

said to understand the data as well as the contextual frame of

reference of the data.

When a person has inconsistency between data from the

task environment and a mental model, that person is faced

with the problem of whether to re-evaluate the current

understanding of the situation or to maintain the dissonance

caused by this inconsistency. Trouble in this integration

process often leads to poor decisions and reasoning errors,

exemplified by the number of failures leading to George

Custer’s defeat at Little Big Horn [23]. Previously-held

beliefs can also prevent a person from integrating new

knowledge, leading to many types of decision biases and

predictable errors in decision making [71], [34], [35], [42],

[87]. These errors force the person to choose between

distrusting the conflicting data, distrusting the data sources, or

maintaining an inconsistent belief set.

The process of reconciling and integrating sources of

information and data from the environment comes up in many

applications of intelligent behavior, but the atomic processes

by which humans integrate knowledge and sensory

information is still not yet well understood [5] [7].

In Klein’s data-frame sensemaking model [38],

problem-solvers simultaneously recognize and construct

frames from available data and manage current frames of

reference. A frame is a representation for a hypothesized

mental structure imposed upon data to organize it.

A frame, used in this sense, helps people create constraints

on internal reasoning processes which help them reason about

their task environments without having to consider all

available data or possible states [37], [46]. The processes of

managing a frame in the Klein model are forming a frame,

elaborating what data is in a frame, questioning an existing

frame, and reconstructing a frame. When people “manage

Conjecture

Knowledge

Inferences

Ambiguous data

Ambiguous symptoms

Observations

Integrate

Explain

Identify
problems

Diagnose

Knowledge
level

Data
level

Sensory
level

Connect

frames” they are defining, connecting, and filtering the data

they attend to and seek out.

Zhang, et al. [95] present a conceptual model of

sensemaking as used in intelligence analysis tasks (Figure 3).

This model also describes a high-level process of integrating

task and problem knowledge with existing knowledge

structures. It describes sensemaking as:

1. Identifying gaps in data and structure

2. Actively seeking for information and structure

3. Accretion, tuning, and restructuring mental models [63]

Figure 3. Model of sensemaking (adapted from [95])

The first activity, identifying gaps, involves learning that

there are inconsistencies between held knowledge and

perceived sensory information. This first activity does not

always happen though because of human limitations. For

instance, many times people have difficulty appropriately

attending to information from the environment which

contradicts their previously held mental model [36].

The second activity, seeking information and structure,

involves developing hypotheses to account for the disparity,

seeking data to build, support, or refute the hypotheses, and

seeking a structure to integrate all of the information.

The third activity involves accretion, tuning, and

restructuring of the mental model. Accretion is the addition of

new information to prior knowledge, tuning is an adjustment

to the person’s background knowledge that previously

existed, and restructuring involves re-evaluating the entire

frame of reference. According to the Zhang’s model [95],

these activities take place until a reasonably explanatory

mental model is completed or until the decision task is

complete.

A. Representing Mental Models

Empirical studies suggest that problem solvers query and

manipulate mental models during task performance [34].

These mental models are internally-stored representations that

enable problem solvers to reason about tasks and task

environments. Their presence and use is supported by a

number of systematic and predictable errors in reasoning

which can be detected through controlled experiments [35],

[42], [87].

A person’s awareness of relevant data in the environment

depends on the quality of that person’s mental model or

background knowledge of the environment [15], [34]. Experts

performing a task can dramatically outperform novices at the

same problem because of the content and structure of their

background knowledge [15]. Because novices lack experience

and background knowledge, they have trouble determining

which data from the environment is relevant to the task. This

is especially pronounced when the task involves processing

large amounts of information [94], [95].

1) Procedural Knowledge

The organization of a person’s mental model, and thus the

ability to determine which data is relevant or significant

depends on mentally stored patterns of interaction [56].

Domain-specific patterns of interaction can be sequences of

actions or higher-level sequences of more general behaviors

[10], [11]. An example of such a pattern of interaction is a

person’s experience troubleshooting automobile problems.

Troubleshooting in the automobile maintenance domain may

be similar enough to troubleshooting in other domains that a

person may have significant knowledge transfer when

troubleshooting in other domains [12].

Other stored mental patterns of interaction constitute

domain-dependent patterns or schemas, and may not be

transferable outside of the particular task environment. An

example of a domain-specific pattern is knowledge of the

sequences of key presses that enable a special move, like

throwing a Hadoken fireball in the Street Fighter II video

game. The knowledge and mastery of many patterns of key

presses does not transfer to the mastery of tasks in other

domains, though it may transfer to the mastery of other video

games involving similar button combinations.

When solving a problem, people can match mentally stored

patterns of actions with aspects of the current situation. This

matching enables them to predict likely future states, and to

develop general task strategies to accomplish the task.

Additionally, more robust stored mental models enable people

to specify what sequences of inputs or actions are needed to

accomplish each function in their current task strategy [10]. In

solving a problem, problem solvers are able to select and

apply specific sets of task operations (or methods) in order to

achieve higher-level goals and the sub-goals from which they

are structured [52]. This indicates that procedural patterns of

knowledge are composed of organizations of goals, operators,

methods, and selection rules within a domain [9].

Experts at a task tend to have more refined and better

organized procedural models about their tasks, which enable

them to perform tasks much more quickly than novices.

Experts have a more accurate representation of what data

elements constitute a meaningful state in the problem space.

Experts in a task domain also have better situation

understanding and better situation awareness as tasks unfold.

They are better at monitoring their progress toward problem

solutions and at estimating the difficulty of tasks than novices

[15], [70].

2) Declarative Knowledge

Experts also tend to have more refined declarative knowledge

models than novices, which allow them to perform tasks more

accurately [54]. Declarative knowledge consists of facts about

a domain and the organization of those facts. This includes

semantic content, such as concepts and facts, and episodic

content, which includes knowledge about events, or when and

where knowledge was acquired [77], [85].

Declarative knowledge has also been referred to as explicit

knowledge [51], information [86], taxonomy or ontology

[25]. Declarative knowledge enables people to match data

elements and affordances in the task environment with stored

procedural patterns [2]. To gauge where they are in the

process and select future goals, strategies, and actions, people

 Task

 Knowledge
 structures &
 instantiations

Task

Completion

Id
e

n
tify

 g
a

p
s

 Search

Search

for data

Search for

 structure

Instantiate

structure

Build

structure

 Updated knowledge
 Accretion:

 Instantiated structure

 Tuning:
 Adapted structure

 Re-structuring:
 New structure

Iterations:
- exploratory search
- focused search

- sensemaking

 Data

 gap

Structure loop

Data loop

 Structure
 gap

can use the match between their declarative knowledge of the

domain and their stored patterns of interactions or procedural

schemas. These matches between the concept space and the

procedural space allow them to infer explanations about

events that have already happened, predict future states of the

task environment, and select goals, operators, methods, and

selection rules to perform tasks in the domain environment.

B. Domain-Specific Knowledge Schemas

Both declarative and procedural knowledge tend to be

organized around memorized patterns [63], [85]. In a famous

study of memory, chess masters were able to reconstruct most

or all of the positions on a chess board after having seen the

board for only five seconds. When novices were given the

same task, they could only recall two to three pieces.

However, if the pieces on the chess board were arranged

randomly instead of in a pattern that chess players typically

encounter, the expert lost the advantage in reconstructing the

board [15]. These results indicate that the experts were not

recalling individual pieces on the board but rather stored

patterns of pieces that they had experience with and could

easily reconstruct from memory. Other studies indicate that

people reconstruct information from their indexes into

episodic memories of an environment [77], [85].

Problem solvers construct, modify, and reconfigure their

mental models constantly. In knowledge-lean tasks, which are

tasks without a lot of semantic content, problem solvers are

able to tune, chunk, and group items to strengthen their

associations in memory, and can remember problem states

they have seen previously. Through methods like these, they

rapidly improve their ability to select task operators with

experience [3], [24], [88].

In knowledge-rich tasks, like software reverse engineering,

some argue that a finite set of generic procedural tasks can be

combined with well-organized knowledge-models to create

intelligent behavior in the task [11][12].

V. Eliciting Mental Models

The field of knowledge engineering has produced and refined

several methods to extract and represent the mental models

and cognitive processes of people solving problems in various

work domains [47], [73], [75], [90]. In some cases, the

methods are used to uncover the processes underlying human

intelligence and in others they are aimed at capturing the

knowledge about a domain.

A. Cognitive Task Analysis

For either purpose of knowledge elicitation, one method for

gaining knowledge about task processes is through a task

analysis. The task analysis is aimed at breaking down a

complex task into smaller tasks so that each step can be

analyzed or so that work or automation supports can be

designed to make the work more efficient or cost-effective.

Hierarchical decomposition of a task has been found to be

useful because it is the means by which humans work with

information from complicated problem domains [31].

Hierarchically decomposing a task into its component

structures is both a modeling challenge and an in-depth

analytical exercise [11].

Background knowledge about a reverse engineering task

can be discovered through document analysis [20]. Because of

the extensive background knowledge required of reverse

engineers, collecting, organizing, and representing factual

knowledge about the reverse engineering domain is a large

undertaking. One approach to capturing declarative

background knowledge is to gather sources, such as textbooks

and articles which are used as training and education

materials, and specifying the semantics of relevant reference

material as an ontology specification in a formal description

language [25].

There are limitations with explicitly capturing background

knowledge from source texts and training materials. First,

extensive ontology modeling is extremely time consuming

and potentially error-prone. Second, there are still not

practical techniques available to verify and validate large

declarative knowledge bases. Third, capturing all of the

background knowledge about each of the knowledge

sub-domains in reverse engineering might be too much to

solve a particular type of task. As a knowledge base gets

larger and larger, an agent or automation support tool that

reasons over that knowledge base will need to have more

intelligent and efficient selection rules to sort and filter

through the possibilities entailed by the knowledge base [12],

[49].

Cognitive task analysis methods can be used to determine

the knowledge that is required for well-defined subset of a

cognitive work domain. Often a cognitive task analysis will

contain multiple methods which reinforce each to triangulate

results and reinforce the reliability of the findings [47].

Depending on the particular methods used, a cognitive task

analysis methodology can extract knowledge at a very high

level or in great detail.

Subject matter expert interviews are often used in cognitive

task analysis to isolate the appropriate terminology and to

scope the investigation to relevant subsets of domain tasks

[39]. Structured interviews can provide insight and rich

qualitative data, which can provide reference knowledge for

other task analysis methods. They can also aid in the selection

of a prototypical task to guide further investigation.

B. Verbal Protocol Analysis

Another procedure often included in task analyses is a verbal

protocol analysis. A verbal protocol is a method that involves

observing a person performing a task while he or she thinks

aloud [21]. When combined with qualitative interview data

from experts, this type of analysis allows researchers to form

several types of inferences. Researchers can use the recorded

verbal data to map participants’ actions to concepts the

participants use in their task. It can also be used to identify

beacons in the task environment, and to infer goals, sub-goals,

and reasoning strategies used in the task [59].

Timing data is also very useful. For example, when a

participant stops speaking during a think-aloud protocol, this

can provide insight into the person’s retrieval from long term

memory, and can indicate steps in the task that may be more

cognitively demanding than others [21].

The number of inputs and outputs a system handles

dramatically increases the number of possible states, which

can make modeling problem solving in knowledge-rich tasks

like reverse engineering challenging. Because of the large

state space, enumerating the state space over all available

variables is potentially not feasible. For this reason,

knowledge engineers must understand what makes up an

actual mental representation of a system, what constitutes a

state in the task environment, and with what variables those

states are constructed.

Researchers can use a verbal protocol to learn about

heuristics or short-cuts people use to make faster decisions

when their available choices are ambiguous. People develop

domain-specific heuristics with experience in a task or

through instruction. Heuristics enable people to filter through

non-essential information and prune the space of actions or

states to those that seem reasonable for the task. Since

heuristics are often specific to a problem domain [31], [46],

[54], they represent an essential component of background

knowledge about the domain [31]. Additionally, learning

about problem solving heuristics may provide insight into

common or generic tasks which have structure and functional

properties that can be exploited with more general

representations [11].

VI. Sensemaking in Reverse Engineering

Software reverse engineering involves observing and

analyzing a program in order to discover what it does, how it

works, and at a higher-level, what the goals of the program’s

designer were [13]. Tasks in reverse engineering require the

ability to quickly integrate background knowledge with the

current situation and use a collection of tools, skills,

processes, knowledge, logic, and creativity to understand the

structure and functionality of complex software systems [17].

It can be seen as a blend of intuition and analytics, where

expert reverse engineers can move between both types of

reasoning as the need arises.

Some conceive reverse engineering as a process of

abstraction from low-level details about software to high-level

concepts [22]. Others conceive it as a set of interconnected

analysis activities aimed at understanding a program to

achieve some goal [17]. Tilley [84] describes reverse

engineering as transforming software artifacts into a mental

model through “mental pattern recognition” and forming

“more abstract system representations.” Muller & Kienle [50]

describe these abstraction levels as source text, structural,

functional, architectural, and application.

While reverse engineers relate observable low-level

software representations to higher-level concepts, they also

must monitor and seek information at very concrete levels.

Descriptions of reverse engineering as simply a process of

moving from concrete to abstract representations miss the

point that semantic concepts exist at low and high levels of

abstraction, and that neither type is reasoned about in

isolation. Studies suggest that reverse engineers work at

multiple levels of abstraction simultaneously to understand

the code and switch between levels of abstraction as their

comprehension needs dictate [8], [45], [53], [91].

Reverse engineering involves an active observation

process, and its activities closely resemble those from the

scientific method. The process of learning about a program is

analogous to how a biologist learns about the properties of a

cell or a physicist learns about properties of matter.

Sensemaking in reverse engineering requires eliciting

information about the program, developing representational

frames from data and background knowledge, and integrating

representational frames to new data and the person’s

knowledge [38], [83], [95].

A. Sensemaking Functions in Reverse Engineering

Reverse engineers must possess detailed “how-to” knowledge

about how to accomplish many different subtasks. At a

general level though, the process of reverse engineering has

much in common with the process of scientific discovery.

These generic functions of reverse engineering programs

canonically involve the interleaving of:

 Goal construction

 Planning

 Carrying out a plan (business as usual)

 Generating hypotheses or questions

 Determining needed information

 Experimentation to seek data

 Instrumentation to isolate unavailable data

 Evaluating and integrating

 Updating the mental model

For a mental reference, the top-level of a hierarchical

extended finite state machine representation of these functions

is shown in Figure 4. In the diagram, each state can be

expanded into its own encapsulated state diagram to further

outline the processes underlying each state. These functional

state diagrams are presented as a framework to organize the

cognitive task analysis work and the information that comes

from it.

Figure 4. Sensemaking Functions in Reverse Engineering

1) Goal construction (Construct-Goal)

One of the first things needed in solving a reverse engineering

problem is a goal. In simple planning problems like the blocks

world domain, or Towers of Hanoi, it is taken for granted that

the goal is present, and that a suitable representation of the

goal state exists. In more complex problems, sometimes the

goal is not known from the outset or is only known in a very

vague way. The goal may come from information in the task

environment such as a prompt, or indirectly, such as when the

person figures out what should be done by interpreting and

synthesizing clues in the task environment.

Because the amount of available data in a reverse

engineering task is enormous and exists across many different

parts of a system, one of the first steps is to identify or develop

specific goals to constrain the analysis. Isolating the overall

reverse engineering problem to smaller sub-goals provides a

set of constraints that can help reverse engineers filter the data

they need to look at.

These goals are many times constructed in situ by the needs

that arise in the course of analyzing the reverse engineering

problem, planning a course of action, and carrying out the

plan. If a person notices things that “look weird” in the

program, it is often an indication that the program is

performing unexpected(and possibly malicious) functionality

which changes the current goal for the reverse engineer, and

which may change the reverse engineer’s top-level goal as

well.

2) Planning (Plan-Approach)

Once the goal is developed and understood, a planning

process is developed to construct one or more sequences of

actions to move towards completion of the desired objective.

One can also construct sequences of actions that are derived

backward from the goal state. Attempts to construct partial

and fully-specified sequences of actions are all contained

under the umbrella of planning [64].

Planning in reverse engineering also involves the selection

of alternative courses of action when there are multiple

competing ways to accomplish a task or subtask. Creating a

plan to get access to all encrypted instructions is an example

of a plan in a reverse engineering task, and there are multiple

ways to gather that data, each of which requires varying levels

of effort, knowledge, skill and time.

3) Carrying Out a Plan (Carry-Out-Plan)

Carrying out a plan is the process of following the sequence of

planned actions, and is termed “business as usual.” As long as

the person can execute the plan, there is no trouble. As the

plan is carried out, the person will need to construct sub-goals

and sub-plans in order to proceed along a sequence of actions.

For this, they may have to go back to the process of goal

construction and planning in order to solve intermediate

problems along the way.

At some point, the reverse engineer may encounter a

problem or experience some sort of surprise which stalls their

progress. This could be arriving in an unexpected state in the

task environment or perceiving data that indicates a problem

in reaching one of their goals (based on prior knowledge [38],

[39]. This is essentially where sensemaking processes begin

in the overall problem solving process.

4) Generating Hypotheses (Generate-Hypothesis)

Reverse engineers also develop questions and hypotheses

about the program they are studying [8]. Reverse engineering

has been referred to as “the iterative refinement of

hypotheses” about a program [84]. Sometimes this may be

done implicitly during the task. For instance, a reverse

engineer might wonder, “How would the control flow change

if I switched the zero flag at this instruction?” or “What will

the EAX register hold when this function returns?”

Hypotheses can also be explicit, as in hypotheses specified in

reverse engineering test plans.

As reverse engineers become more familiar with the

patterns of interaction of the system being studied, they can

develop on-the-fly hypotheses, like “I think there might be a

structured exception handler that the code is invoking which

makes the program terminate here.” The recognition and use

of this type of domain-specific structural schema in

generating hypotheses and questions is characterized as one of

the features of a sensemaking process [56].

5) Determining Needed Information (Determine-Test)

Once a hypothesis or question is established, there needs to be

some way to answer the question or to support or refute the

hypothesis. This results in a “data loop” as shown earlier in

Figure 3 [56][95]. In the data loop, a hypothesis has been

constructed, and a test must be developed to determine

whether the hypothesis should be supported, refuted, or

whether it should be suspended until further testing can take

place.

 The test can be generated through a “what-if” type of

inference where the hypothesis is assumed to be true, the

consequents of that hypothesis being true are also assumed,

and then the person determines how to test whether or not

those consequents hold. The generation of a hypothesis and

the generation of a test are both complicated phenomena

which need more investigation before developing an atomic

model of generativity. This is a task for future research.

The process to determine the needed information and a test

to gather that information can produce facts about the

environment, but it can also produce additional concepts or

relationships, such as constraints in how data are related. In

this way, the function to determine the needed information

and to construct a test could account for the “structure loop” in

[95] as well as the “data loop.”

6) Experimenting to Seek Data (Seek-Data)

Once a reverse engineer has a structure (a set of hypotheses),

that structure brings a number of inferences and consequents

that should hold if those inferences turn out to be true. Like

experimentation in science, reverse engineering involves

seeking confirming or contradictory evidence about a

hypothesis using data from the program environment.

Once the idea of the test is constructed, the data seeking

phase is carried out, which is another planning process,

whereby a sequence of actions is constructed that can gather

the needed data from the environment. To gather data, reverse

engineers have to isolate a behavior of interest, either by

providing the program an artificial input like changing a flag

on a register, or by observing the behavior in an isolated way.

An example of this is making a plan to test whether or not a

program is spawning another process. After the hypothesis is

constructed (that the program is spawning another process),

and a test is developed based on an inference from a structural

understanding of the environment (if the program is spawning

another process then another process will be present at some

time after the program is run), then a plan can be carried out to

gather that data:

1. Run a program to prevent processes from exiting

2. Run the target program

3. Run a separate program to monitor open processes

4. Determine if another process was run

Through this process of interaction, data seeking, and

planning in the environment could return information as a

result, which can be used to generate new facts in declarative

knowledge about the environment, about the structure of

elements in the environment, or about more abstract concepts

related to elements in the environment.

7) Instrumentation (Instrument-System)

If the necessary data is not readily available, a process of

instrumentation must take place. Instrumentation refers to the

active development of capabilities to gather data about a

program or system. In many scientific fields, instrumentation

involves the placement and measurement of sensors that

measure physical, chemical, or electrical properties.

In reverse engineering tasks, sensors or probes are not

always available for use, and often the properties sought are

more highly structured than single variables. Because of this,

skilled reverse engineers develop their own tools through

adapting existing hardware or software tools or programming

their own software to solve measurement and information

gathering tasks. Programming skill and troubleshooting skills

are therefore fundamental capabilities of reverse engineers.

8) Evaluating and Integrating (Evaluate-Argument)

Once the reverse engineer has obtained information to fill in

gaps in their knowledge, they must interpret the data in order

to assess its quality, assess whether it answers the question

adequately, and assess whether and what new knowledge

should be added to their existing knowledge structures.

In informal experiments (like formal ones), things can go

wrong such as when other processes affect the way program

behavior represents itself, or when the experiment only works

for certain test conditions. The process of evaluation and

integration also involves determining if the data or its sources

should be trusted. For example, the person conducting a test to

see if processes are present may think: “if a rootkit is on my

system, it may be hiding the presence of a process from my

analysis program.”

Given this evaluation, when a person attempts to update the

mental model, they could dismiss the idea or investigate it

further if it causes too much dissonance or trouble with other

knowledge about the task environment.

9) Updating the Mental Model (Update-Knowledge)

Updating the mental model consists of the processes of

accretion, restructuring, and tuning knowledge in a mental

model outlined in [63] and included in the model in [95].

Through this process, new knowledge is added, existing

knowledge is modified, and relationships between pieces of

knowledge are changed, depending on the type of knowledge

received from the evaluating phase.

Hypotheses, experiments and observations can provide

reverse engineers with knowledge about the system, but do

not provide a complete model of a large program. With large

programs, reverse engineers must quickly discover the most

relevant pieces of knowledge about the program. The updated

mental model should enable the person to filter through large

amounts of data to determine what is relevant better than they

were able to during previous loops.

Other major tasks that require an updated or emerging

mental model of the program include naming concepts,

assigning concepts to locations in the code, and recognizing

assigned concept locations [60].

VII. Knowledge Modeling for Reverse

Engineering

In order to understand the automation needs that would

support reverse engineering tasks, it is important to develop

knowledge requirements for those tasks. Knowledge is

typically divided into procedural and declarative knowledge,

which serve different purposes. Declarative knowledge is the

explicit encoded knowledge that can be recalled and recited.

This consists of concepts in the domains, facts, and facts about

how concepts relate to each other. On the other hand,

procedural knowledge is composed of how-to knowledge that

allows a person to perform a task when they come across a

situation.

A. Modeling Declarative Knowledge

Von Mayrhauser and Vans [91] studied programming

knowledge and divided what is arguably declarative

knowledge into separate conceptual models for the program,

the situation, the domain (what they called the top-down

model), and background knowledge. In the top-down model,

programmers chunk information about program, instructions,

modules, the problem domain, and theorized goals and plans

of the programmer, and synthesize it all into their existing

knowledge base. The knowledge base includes schemas of

concepts and concept families that are used in developing the

program model, situation model, and domain model of a

program [53], [91].

The declarative knowledge that a reverse engineer must

understand is extensive. Software reverse engineering

requires knowledge of thousands or hundreds of thousands of

facts about how code is written, compiled, linked, and loaded;

the operating system which manages running programs; the

processor architecture on which the program and operating

system runs; and sometimes other hardware, firmware, and

input/output devices that can be involved or invoked. These

facts provide the reverse engineer the ability to make

inferences about how changes made in one part of the system

can affect other parts of the system.

Since the knowledge required by a reverse engineer is

broad as well as deep, reverse engineers’ declarative

knowledge models will likely be very organized and

sophisticated. To model and simulate problem solving (and

sensemaking) in reverse engineering, this extensive base of

knowledge will need to be considered by either limiting the

scope of the model or expanding its encoded knowledge.

Some sub-domains of declarative knowledge are shown in

Table 1.

The declarative knowledge models of reverse engineers

help them determine what elements in the environment are

relevant to their task. Declarative knowledge also provides

reverse engineers the frame of reference in their planning

tasks and helps them determine what data to seek from the

environment, how to develop a hypothesis, how to isolate the

needed data, and how to interpret the results of their

experimentation.

Debugging and troubleshooting skills

Computer programming

Program compilation and interpretation

Object file linking and executable loading

Program execution

File and file header formats

Library, API, and operating system calls and internals

Assembly language (multiple instruction sets)

Firmware and hardware

Processor structure and function

Communication protocols

Anti-debugging and anti-reverse engineering tricks

Table 1. Declarative Knowledge Sub-Domains in

Reverse Engineering

In addition to factual knowledge, reverse engineers’

declarative knowledge models contain causal relationships

about the data, which can be represented as constraints on

existing knowledge, or as predicate statements on constant

variables. The causal relationships may take the form of an

abstract cause and an abstract effect and concrete

instantiations of the causal concept and the effect concept.

Sensemaking functions can exist across different levels of

sensory cues, information, and background knowledge

(Figure 5).

Figure 5. Integrating cause and effect

Reverse engineers’ declarative knowledge models of a

program as it runs are augmented with structural information

from the environment, including the layout of memory,

patterns representing programming constructs; functional

information, such as input and output system calls used by the

program; and behavior information such as whether the

program writes to disk or communicates over the network.

Many types of structural information can be represented either

in terms of cause and effect or in terms of concepts in the

domain.

The set of concepts in a task domain is a central component

to a person’s declarative knowledge [63]. A concept

represents a template or class which describes a set of objects

or entities. Often the template concept is based on an object’s

categorization with a group or its similarity to a prototypical

member of that group. Categorizations among concepts are

often defined by shared attributes between similar or related

entities [64].

A schema is a grouping of concepts by shared or similar

attributes that captures sets of relations and attributes that an

entity might have [4]. In a schema, data members are

organized by their attributes, and new entities are classified

into categories based on how they match the attributes of

available categories [55], [63].

As discussed earlier, a frame is another representation that

is used to organize background knowledge [38], [48]. A frame

is a “network of nodes and relations” that represents a

person’s background knowledge of a domain. These frames

can be organized into a frame system which identifies how the

knowledge is structured. Each frame is made up of a number

of slots which are blank or unfilled attributes. The slot may

contain both a value, and a slot type which specifies what kind

of data is able to occupy that slot.

Other means to organize representations of declarative

knowledge are categories, composite objects, components

(especially concerning systems or devices), networks, and

conceptual constructs [4], [12], [49], [64]. Each of these

representations has its own formalism for encoding

knowledge, but each serves as a way for people to formally

represent mental objects and their relations to other objects.

One example to illustrate a potential formalism for

encoding knowledge from a task analysis is a model in the

ACT-R cognitive architecture [1]. In the ACT-R theory

(which is contained in the ACT-R software), knowledge in

memory is divided into declarative knowledge and procedural

knowledge representations.

In ACT-R, declarative knowledge is composed of chunks,

which can be retrieved from long-term or short-term memory.

Chunks are pieces of memory, which have a chunk-type and a

set of slot and value pairs. A chunk-type is a template for a

chunk which declares what types of slots can be held by a

chunk of that type. A slot is an attribute which describes some

property of a mental object or entity. A chunk’s slot can take

on various values, and when it does so it represents specific

knowledge about an entity’s attributes.

In Figure 6, a chunk-type is declared called register, and all

registers can have a number-bits slot and a register-type slot.

After that, three chunks are added to ACT-R’s declarative

memory module which represent the EAX, AX, and CR0

registers on the Intel x86 processor architecture.

Figure 6. Declarative knowledge in ACT-R

The ACT-R declarative knowledge does not model formal

domain property constraints as would be the case with formal

description logic or first order logic. However, through the

combination of encoded declarative knowledge and encoded

production rules, sophisticated task behavior has been

modeled in various task and problem-solving domains [2].

B. Modeling Procedural Knowledge

Procedural knowledge in ACT-R is defined by production

rules, which are patterns consisting of a left-hand side and a

right-hand side. The left-hand side of a production rule

contains a set of state conditions which represent a pattern of

state variables to be matched by the agent performing the task.

The right-hand-side of a production rule represents a set of

actions to be accomplished by the agent. While an agent is

engaged in a problem-solving task, if the state of the

environment meets one of the sets of conditions defined on the

left-hand side of a production, the actions on the right-hand

side of that production fire. The action side of a production

often changes the state of the variables in one or more slots in

the chunk listed on the action (or right-hand-side) of the

production (Figure 7).

Essentially productions in ACT-R create a state-machine

representation of a problem-solving process. Particular

productions in a cognitive architecture like ACT-R represent

states in an extended finite state machine and the condition

rules and patterns of production firing represent the transition

between those states. Modeling tasks in a cognitive

architecture provide the modeler a way to simulate and predict

human behavior in a cognitive task, and often seek to be

“cognitively plausible” rather than optimal [2].

(chunk-type register number-bits type)

(add-dm

 (eax ISA register

 number-bits 32

 type general-purpose)

 (ax ISA register

 number-bits 16

 type general-purpose)

 (cr0 ISA register

 number-bits 32

 type control-register))

Knowledge
level

Data
level

Sensory
level

Abstract
cause

Abstract
effect

Concrete
cause

Concrete
effect

“Real world” (environment)

Process:
1 Tune or refine concept
2 Restructure to generalize data to concepts
3 Instantiate to match concepts to data
4 Conjecture causal relationship
5 Seek data to support/refute hypotheses

1
4

2

5

3 3 2

Figure 7. A simple ACT-R production rule

Modeling cognitive tasks at the level of detail required by

ACT-R requires many commitments to architectural and

attentional details which may not be required in other

production-based expert systems or artificial intelligence

frameworks. However, it has the advantage of being able to

model a task in a way that allows the investigation of how

humans actually perform the task.

VIII. Conclusion

This paper provided an overview of the current state of

research in sensemaking, situation understanding, and

situation awareness and how these concepts can be applied to

the problem of reverse engineering. This paper also offered an

overview of a structured cognitive task analysis methodology

to enable elicitation of knowledge that reverse engineers use

in daily practice. It then described knowledge representation

formalisms suited to the modeling of cognition in context,

namely the ACT-R cognitive architecture. Finally, it

presented a background on various processes in software

reverse engineering in the context of the sensemaking

components that those tasks levy on individuals.

Modeling and simulating intelligent behavior in

complicated, knowledge-rich tasks like software reverse

engineering is a challenging undertaking, but the steps here

presented can enable the cyber security and modeling and

simulation communities to produce more robust models of

intelligent reverse engineering behavior. These steps include

isolating the domains of interest, isolating the knowledge

required in those domains, verifying the knowledge needed to

complete reverse engineering tasks, and then developing and

refining formal models of conceptual and procedural

knowledge, such as ontologies and production rules, until they

can handle and simulate intelligent behavior in the task.

Areas for future research that would improve researchers’

ability to model problem-solving behavior in knowledge-rich

tasks like software reverse engineering include:

 The development of better tools and methods to automate

the extraction, verification, and validation of declarative

knowledge from documents

 Streamlined methodologies to extract and represent

relevant declarative and production knowledge from

examples of task behavior

 Better and more refined development processes to model

declarative and procedural knowledge in complex task

environments

With the current state of cyber security and the constant

threat from cyber attacks, increasingly intelligent tools and

automated assistance are more important than ever.

Executable reverse engineering models could feasibly help

engineers test new software before it is released to the world,

provide intelligent assistance to those performing

security-related work, or provide intelligent tutors that are

sensitive to the needs of new reverse engineers and cyber

security professionals.

References

[1] J. Anderson and C. Lebiere. The Atomic Components of Thought,
Lawrence Erlbaum Associates, 1998.

[2] J. R. Anderson. How Can the Human Mind Occur in the Physical

Universe? Oxford University Press, New York. 2007.
[3] M. E. Atwood and P. G. Polson. “A process model for water jug

problems”, Cognitive Psychology, 8 (2), pp. 191-216, 1976.

[4] L. W. Barsalou, Frames, Concepts, and Conceptual Fields,
Lawrence Elbaum Associates, 1992.

[5] B. Birrer, R. Raines, R. Baldwin, M. Oxley, and S. Rogers. “Using

Qualia and Hierarchical Models in Malware Detection”, Journal
of Information Assurance and Security, 4, pp. 247–255, 2009.

[6] B. Blunden. The Rootkit Arsenal: Escape and Evasion in the Dark

Corners of the System. Wordware, 2009.
[7] R. A. Brooks. “Elephants don’t play chess”, Robotics and

Autonomous Systems. (6) 1-2. pp. 3-15, 1990.

[8] R. Brooks. “Towards a theory of the comprehension of computer
programs”, International Journal of Man-Machine Studies, 18,

pp. 543-554, 1983.

[9] S. K. Card and T. P. Moran. The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, 1983.

[10] J. M. Carroll and J. R. Olson. “Mental Models in

Human-Computer Interaction”, in M. Helander (Ed.), Handbook
of Human-Computer Interaction, pp. 45-65, Elsevier Science

Publishers, 1988.
[11] B. Chandrasekaran. “Generic tasks as building blocks for

knowledge-based systems: The diagnosis and routine design

examples”, The Knowledge Engineering Review, (3) 3, pp.
183-210, 2009.

[12] B. Chandrasekaran and T. R. Johnson. “Generic tasks and task

structures: History, critique and new directions”, Second
Generation Expert Systems, pp. 239-280, 1993.

[13] E. J.Chikofsky and J. H. Cross II. Reverse engineering and design

recovery: A taxonomy. IEEE Software. pp. 13-17. 1990.
[14] B. Crandall and K. Getchell-Reiter. “Critical decision method: A

technique for eliciting concrete assessment indicators from the

intuition of NICU nurses”, Advances in Nursing Science, (16) 1. p.
42, 1993.

[15] A. D. DeGroot. Thought and Choice in Chess. Amsterdam

University Press, 1965.
[16] S. R. Dixon, C. D. Wickens and D. Chang. “Mission control of

multiple unmanned aerial vehicles: A workload analysis”, Human

Factors, (47) 3, p. 479, 2005.
[17] E. Eilam. Reversing: Secrets of Reverse Engineering, Wiley,

2005.

[18] M. R. Endsley. “Measurement of situation awareness in dynamic
systems”, Human Factors, 37, 65-84, 1995.

[19] M. R. Endsley and M. D. Rodgers. “Situation awareness and

information requirements analysis for en route air traffic control”,
Human Factors and Ergonomics Society Annual Meeting

Proceedings, (38) 1. pp. 1071-1813, 1994.

[20] R. S. Englemore and E. Feigenbaum. “Expert Systems and
Artificial Intelligence”, in JTEC Panel on Knowledge-Based

Systems in Japan, May 1993.

[21] K. Ericsson and H. Simon. Protocol Analysis: Verbal Reports as
Data (Rev. ed.). MIT Press, Cambridge, MA, 1993.

[22] G. C. Gannod and B. H. C. Cheng. “A framework for classifying

and comparing software reverse engineering and design recovery
techniques”, Proceedings of the Sixth Working Conference on

Reverse Engineering, p. 77, 1999.

[23] D. C. Gompert and R. L. Kugler. “Custer in cyberspace”, National
Defense University Center for Technology and National Security

Policy, Washington, D. C., 2006.

[24] J. G. Greeno. “Hobbits and orcs: Acquisition of a sequential
concept”, Cognitive Psychology, 6 (2). pp. 270–292, 1974.

[25] N. Guarino. “Formal Ontology and Information Systems”,

Proceedings of FOIS’98, pp. 3-15, IOS Press, Amsterdam, 1998.
[26] HBGary, Inc. Flypaper. www.hbgary.com/free-tools1980

[27] J. Hennessy, D. Patterson, and D. Goldberg. Computer

Architecture: a Quantitative Approach, Morgan Kauffman, Inc.,
2003.

[28] Hex-Rays, Inc. The IDA Pro Disassembler and Debugger.

www.hex-rays.com/idapro/
[29] G. Hoglund and J. Butler. Rootkits: Subverting the Windows

Kernel. Addison-Wesley Professional, 2005.

(p follow-jmp

 =goal>

 isa goal

 state following-jump

 target =destination

==>

 +goal>

 isa goal

 current-instr =destination)

[30] G. Hoglund and G. McGraw. Exploiting Software: How to Break

Code. Addison-Wesley, 2004.
[31] P. Huang and K. Sycara. “Learning from and about the opponent”,

in A. Kott and W. McEneaney (eds), Adversarial Reasoning:

Computational Approaches to Reading the Opponent’s Mind,
Chapman & Hall/CRC, 2007.

[32] ImpRec, The World’s Most Famous IAT Rebuilder Tool.

http://www.woodmann.com/collaborative/tools/index.php/ImpR
EC

[33] Intel Corporation. IA-32 Intel Architecture Software Developers

Manual, Intel Corporation, 2001.
[34] P. N. Johnson-Laird. Mental Models: Towards A Cognitive

Science of Language, Inference and Consciousness, Harvard

University Press, 1983.
[35] P. N. Johnson-Laird. How We Reason, Oxford University Press,

USA. 2006.

[36] D. Kahneman Attention and Effort. Prentice-Hall Inc., 1973.
[37] C. Kemp. The Acquisition of Inductive Constraints, PhD

Dissertation, MIT, 2007.

[38] G. Klein, J. K. Phillips, E. L. Rall and D. A. Peluso. “A data-frame
theory of sensemaking”, Expertise out of Context: Proceedings of

the Sixth International Conference on Naturalistic Decision

Making, pp. 113–155, 2003.
[39] G. Klein. “Developing expertise in decision making”, Thinking &

Reasoning, (3) 4, pp. 337-352, 1997.

[40] G. Klein, B. Moon and R. R. Hoffman. “Making sense of
sensemaking: alternative perspectives”, IEEE Intelligent Systems,

(21) 4, pp. 70–73, 2006.
[41] C. Kruegel, W. Robertson, F. Valeur and G. Vigna. “Static

disassembly of obfuscated binaries”, Proceedings of the 13th

USENIX Security Symposium, pp. 255-270. 2004.
[42] N. Y. L. Lee and P. N. Johnson-Laird. “Synthetic Reasoning and

the Reverse Engineering of Boolean Circuits”, Proceeding of the

Twenty-Seventh Annual Conference of the Cognitive Science
Society, pp. 1260-1265, 2005.

[43] S. Letovsky. “Cognitive processes in program comprehension”,

Empirical Studies of Programmers, pp. 58-79, Ablex Publishing.
Norwood, NJ, 1986.

[44] LordPE, available at http://www.woodmann.com/collaborative/

[45] tools/index.php/LordPE.
[46] D. Mellado, E. Fernandez-Media and M. Piattini. “A common

criteria based security requirements engineering process for the

development of secure information systems”, Computer
Standards & Interfaces, (29) 2. pp. 244-253, 2007.

[47] Z. Michalewicz and D. Fogel. How to Solve It: Modern Heuristics,

Springer-Verlag, New York, 2004.
[48] L. Militello and R. Hutton. “Applied cognitive task analysis

(ACTA): a practitioner's toolkit for understanding cognitive task

demands”, Task Analysis, pp. 90-113, 2000.
[49] M. A. Minsky. “Framework for Representing Knowledge”, MIT

Artificial Intelligence Lab Technical Report, 1974.

[50] K. Morik, B. B. Kietz, W. Emde and S. Wrobel. Knowledge
Acquisition and Machine Learning, Morgan Kaufmann

Publishers, Inc., 1993.

[51] H. A. Muller and H. M. Kienle. “A small primer on software
reverse engineering”, Technical Report, University of Victoria,

2009.

[52] I. Nonaka and H. Takeuchi. “The knowledge-creating company”,
Harvard Business Review: The Best of HBR, www.hbr.org, 1991.

[53] D. Norman. “Some observations on mental models”, in Mental

Models, Lawrence Erlbaum Associates, Inc., 1983.
[54] N. Pennington. “Stimulus structures and mental representations in

expert comprehension of computer programs”, Cognitive

Psychology, 19, pp 295-341, 1987.

[55] J. D. A. Petrowski and P. S. E. Taillard. Metaheuristics for Hard

Optimization, Springer, 2006.

[56] J. Piaget. The Child’s Construction of Reality, Routledge, 1954.
[57] P. Pirolli and S. Card. “The sensemaking process and leverage

points for analyst technology as identified through cognitive task

analysis”, Proceedings of the International Conference on
Intelligence Analysis, pp. 2-4, 2005.

[58] P. Porras, H. Saidi and V. Yegneswaran. “A multi-perspective

analysis of the Storm (Peacomm) worm”, SRI International,
Computer Science Laboratory Technical Report, 2007.

[59] P. Porras, H. Saidi and V. Yegneswaran. “An analysis of

Conficker’s logic and rendezvous points”, SRI International,
Computer Science Laboratory Technical Report, 2009.

[60] M. I. Posner. Foundations of Cognitive Science. The MIT Press,
MA, 1993.

[61] V. Rajlich. “Intensions are a key to program comprehension”,

Proceedings of the International Conference on Program
Comprehension (ICPC’09), pp. 1-9, 2009.

[62] P. Rohatgi. “Side-channel attacks”, Handbook of Information

Security, Wiley, Inc., pp. 241, 2006.
[63] E. M. Roth, D. D. Woods and H. E. Pople Jr. “Cognitive

simulation as a tool for cognitive task analysis”, Ergonomics (35)

pp. 1163-1198, 1992.
[64] D. Rumelhart and D. Norman. “Representation in Memory”,

University of California, San Diego La Jolla Center for Human

Information Processing, Technical Report, 1983.
[65] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Pearson, Inc., 2003.

[66] N. B. Sarter, D. D.Woods and C. E. Billings. “Automation
surprises”, Handbook of Human Factors and Ergonomics, (2), pp.

1926-1943, 1997.

[67] N. B. Sarter and D. D. Woods. “Situation Awareness: A critical
but ill-defined phenomenon”, International Journal of Aviation

Psychology, 1, pp. 45-57, 1991.

[68] N. B. Sarter and D. D. Woods. “Autonomy, Authority, and
Observability: The Evolution of Critical Automation Properties

and Their Impact on Man-Machine Coordination and

Cooperation”, Proceedings of the 6th IFAC/IFIP/IFORS/IEA
Symposium on Analysis, Design, and Evaluation of Man-Machine

Systems, Cambridge, MA. 1994.

[69] N. B. Sarter and D. D. Woods. “Pilot Interaction with Cockpit
Automation: Operational Experiences with the Flight

Management System”, International Journal of Aviation
Psychology, 2(4), 303-321, 1992.

[70] N. B. Sarter and. D. D. Woods. “Pilot Interaction with Cockpit

Automation II: An Experimental Study of Pilots' Model and
Awareness of the Flight Management and Guidance System”,

International Journal of Aviation Psychology, 4(1), 1-28. 1994.

[71] A. Schoenfeld and D. Herrmann. “Problem perception and
knowledge structure in expert and novice mathematical problem

solvers”, Journal of Experimental Psychology: Learning,

Memory, and Cognition, 8 (5), pp. 484–494, 1982.
[72] B. Schwarz, S. Debray and G. Andrews. “Disassembly of

executable code revisited”, Proceedings of the Ninth Working

Conference on Reverse Engineering, pp. 45-54, 2002.
[73] C. R. Schwenk. “Cognitive simplification processes in strategic

decision-making”, Strategic Management Journal, (5) 2, pp.

111-128, 1984.
[74] T. L. Seamster, R. E. Redding, J. R. Cannon, J. M. Ryder and J. A.

Purcell. “Cognitive task analysis of expertise in air traffic

control”, The International Journal of Aviation Psychology, (3) 4,
pp. 257-283, 1993.

[75] A. Silberschatz, P. Galvin and G. Gagne. Operating System

Concepts, Addison-Wesley, New York, 1998.
[76] H. Simon and C. Kaplan. “Foundations of cognitive science”, in

M. I. Posner (Ed.), Foundations of Cognitive Science, pp. 1-47,

1993.
[77] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z.

Liang, J. Newsome, P. Poosankam and P. Saxena. “BitBlaze: A

new approach to computer security via binary analysis”,
Information Systems Security, pp. 1-25, 2008.

[78] S. Sparks, S. Embleton, R. Cunningham and C. Zou. “Automated

vulnerability analysis: Leveraging control flow for evolutionary
input crafting”, Proceedings of Computer Security Applications

Conference, pp. 477-486, 2007.

[79] L. R. Squire. Memory and the Brain, Oxford University Press,
New York, 1987.

[80] M. Sutton, A. Greene and P. Armini. Fuzzing: Brute Force

Vulnerability Discovery, Addison-Wesley Professional, 2007.

[81] P. Szor. The Art of Computer Virus Research and Defense,

Addison-Wesley Professional, 2005.

[82] R. M. Taylor. “Situation awareness rating technique (SART): the
development of a tool for aircrew systems design”, in Situational

Awareness in Aerospace Operations (Ch 3), Neuillysur-Seine,

France, NATO-AGARD-CP-478, 1990.
[83] Y. J. Tenney, M. J. Adams, R. W. Pew, A. W. Huggins and W. H.

Rogers. “A principled approach to the measurement of situation

awareness in commercial aviation”, NASA contractor report
4451, Langley Research Center, 1992.

[84] T. Tiemens. “Cognitive models of program comprehension”,

Software Engineering Research Center Technical Report, 1989.
[85] S. Tilley. “A reverse-engineering environment framework”,

Carnegie Mellon University Technical Report
CMU/SEI-98-TR-005, 1998.

[86] E. Tulving. “Episodic and Semantic Memory”, in Organization of

Memory, Academic Press, 1972.
[87] I. Tuomi. “Data is more than knowledge: implications of the

reversed knowledge hierarchy for knowledge management and

organizational memory”, Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences, 1999.

[88] A. Tversky and D. Kahneman. “Judgment under uncertainty:

Heuristics and biases”, in Judgment and Decision Making: An
Interdisciplinary Reader, p. 35, 2000.

[89] K. VanLehn. “Cognitive skill acquisition”, Annual Review of

Psychology, (47), pp. 513-539, 1996.
[90] I. Vessey. “Expertise in debugging computer programs: a process

analysis,” International Journal of Man-Machine Studies, (23),

pp. 459-494, 1985.
[91] K. J. Vincente. Cognitive Work Analysis: Toward Safe,

Productive, and Healthy Computer-Based Work, Lawrence

Erlbaum Associates, 1999.
[92] A. von Mayrhauser and A. M. Vans. “From code understanding

needs to reverse engineering tool capabilities”, Proceedings of the

Sixth International Workshop on Computer-Aided Software
Engineering (CASE’93), 1993.

[93] K. Weick. Sensemaking in Organizations, Sage Publications, Inc.,

1995.
[94] Wireshark, www.wireshark.org.

[95] D. D. Woods, E. S. Patterson and E. M. Roth. “Can we ever escape

from data overload? A cognitive systems diagnosis”, Cognition,
Technology, & Work, (4) 1, pp. 22-36, 2002.

[96] P. Zhang, D. Soergel, J. Klavans and D. Oard. “Extending
sense-making models with ideas from cognition and learning

theories”, Proceedings of the American Society for Information

Science and Technology, 45 (1), pp. 23, 2008.

Author Biographies

Adam R. Bryant is a PhD candidate at the Air Force Institute of

Technology performing research studying the mental models of software
reverse engineers. He received his MS in computer science and an MS in

information resource management from the Air Force Institute of Technology

in 2007. He received a BS in social psychology from Park University in 2001.
He spent nine years as an active duty service member in the U.S. Air Force

and currently works as a research scientist at the Air Force Research

Laboratory in Dayton, Ohio.

Robert F. Mills received his PhD in electrical engineering from the

University of Kansas in 1994, his MS in electrical engineering from the Air
Force Institute of Technology in 1987, and his BS in electrical engineering

from Montana State University in 1983. His research interests are in network

management and security, insider threat mitigation, and mission assurance.
He is a member of Eta Kappa Nu and Tau Beta Pi, and is a Senior Member of

the IEEE.

Gilbert L. Peterson received his PhD in computer science from the

University of Texas Arlington in 2001 and a BS in architecture from the

University of Texas Arlington in 1995. His research interests include digital
forensics, insider threat mitigation, and artificial intelligence.

Michael R. Grimaila received his PhD in computer engineering from
Texas A&M University in 1999. His research interests include cyber incident

detection, mission assurance, network management and security, information

warfare, and systems engineering. He is a member of the ACM, Eta Kappa
Nu, ISACA, ISC2, ISSA, Tau Beta Pi, and he is a Senior Member of the

IEEE.

