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Abstract: Software reverse engineering involves analyzing 

computer program executables to understand their structure, 

functionality, and behavior. In this paper, common reverse 

engineering functions are decomposed to isolate the 

information-processing and sensemaking subtasks involved. 

This paper reviews the applicable literature on eliciting mental 

models of software reverse engineers. Based on the literature, a 

taxonomy of common processes is developed which leads to a 

methodology to elicit and represent reverse engineers’ mental 

models of the tasks.  
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I. Introduction 

Software reverse engineering is a type of complex task which 

at the surface involves many common features with the 

cognitive processes of sensemaking and situation awareness. 

In particular, reverse engineering an executable program 

requires a person to process and sift through large amounts of 

data and integrate that data with extensive specialized 

background knowledge [17].  

As a first step to isolating and understanding the elements 

of sensemaking in software reverse engineering, this paper 

reviews existing models of situation awareness and 

sensemaking in the context of human comprehension 

processes in software reverse engineering. This paper also 

describes the application of techniques borrowed from 

knowledge engineering and decision making research to study 

cognitive processes involved in reverse engineering.  

The paper is organized as follows: First, a discussion of the 

data representation in a reverse engineering task environment 

is presented. Next conceptual models of situation 

understanding and sensemaking processes are presented to 

outline the major functions of each construct. Next, a 

methodology is presented for eliciting and representing 

knowledge from reverse engineers to capture (1) the basic 

semantics and structure of knowledge required to solve 

problems intelligently in the task domain, and (2)  behavioral 

processes involving sensemaking in the task domain for 

further, more refined investigation.  

This paper’s original contribution is the synthesis and 

refinement of models of sensemaking and situation awareness 

with cognitive processes in software reverse engineering. 

II. Data Representation in a Reverse 

Engineering Task Environment 

Reverse engineers analyze programs to discover and correct 

implementation flaws in software, to verify and strengthen 

security protections in software-based systems, to mitigate 

potential attacks on software, or to understand potentially 

malicious code [6], [29], [30], [80].  

Reverse engineering a program from its executable form 

may be required because the source code of the program is not 

available. In this case, reverse engineers work with assembly 

language representations of programs, and may have to 

generate those representations themselves. Analyzing 

programs from assembly language is more complicated 

because assembly language typically has a one-to-one 

mapping with machine code the computer understands, and 

thus lacks programming abstractions that exist in higher-level 

languages [76].  

The benefit of working from only assembly-level 

representations is that reverse engineers can develop a very 

detailed understanding of the exact behavior of programs they 

investigate. This understanding relies on a much smaller 

number of unchecked assumptions than learning about a 

program from its published application programming 

interface or even its source code. In this way, reverse 

engineers can collect observable data about how software 

actually interfaces with hardware and performs operations. In 

fact, many people who reverse engineer programs from binary 

representations do not consider an activity reverse 

engineering if it means reading source code [17], [29], [30]. 

1) Assembly Instruction Data 

Once a program is compiled, it can contain thousands or 

millions of assembly language instructions. These instructions 

perform operations on the processor and memory, provide 

calls to operating system functions, and access and manipulate 

data [74], [27]. On x86-based processors, the assembly 

language bytes represent instructions that can be translated by 

a disassembler into opcodes such as push, mov, jnz, and call 

and register name or memory address operands.  

In the x86 instruction set architecture, instruction 

mnemonics can be of various lengths [33], so even 

disassembling the instructions correctly can prove to be 

difficult [71]. Processor architectures may have several ways 

to accomplish the same behavior using different assembly 

instructions. One instruction opcode may have exactly the 

same effects as another seemingly unrelated opcode. Or the 

exact effects of two different instructions can be different, but 
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the major effect of the different instructions is the same. For 

example, in x86 the nop instruction simply exchanges a 

register for itself, an operation with no side effects [33]. Any 

other set of instructions with no side effects could be 

considered basically the same instruction.  

The actual instruction that executes can vary depending on 

the instruction prefixes which comprise the first bytes of the 

instruction, other bytes within the instruction (such as the mod 

R/M byte), or the state of the CPU and settings on bit flag 

registers. Additionally, the x86 instruction set architecture 

also allows a flexible form of addressing where an instruction 

may start at any addressable byte [33], [71]. This means that a 

multi-byte instruction might be perceived as one instruction 

when read from its first byte, but a different instruction when 

read from the second or third byte. 

A reverse engineer can step through a disassembled program 

in a debugger instruction by instruction or read sequences of 

instructions to interpret their meanings. A reverse engineer 

can also monitor how the value of register or memory values 

change with each instruction, a process called data slicing 

[89].  

Besides assembly instructions, data from the environment 

can include bytes in hexadecimal, control flow sequences, 

sequences of system calls, trace data, register values, memory 

values, state transition diagrams, graph structures, or text. 

Data can also include indications from interfaces with the 

program, data traveling over hardware, a system bus, or a 

network. It may also consist of operating system data such as 

the contents of interrupt vector tables, system call tables, and 

process control blocks.  

2) Program Data 

A string of bytes in a program’s data section may have several 

different structural interpretations, depending on how it is 

represented and on which byte the disassembler attempts to 

begin to interpret the string [41]. The string of bytes could 

represent a sequence of instructions, flags to change control 

flow, or function call arguments. Data stored in memory 

locations, registers, or system objects can be represented as 

strings of binary values, integers, floating point values, ASCII 

or UNICODE text strings, hexadecimal values, or as parts of 

more complex data structures.  

Program data can include the state of the processor and the 

contents of the registers, memory regions outside of the 

process which the program might gain access to, and file or 

registry contents which the program may change through 

system calls.  

3) Visual Data 

Another data representation sometimes available to reverse 

engineers are functional or control-flow abstractions. A 

control-flow graph of a program breaks the program up into 

functional components (often basic blocks demarcated by jmp 

or call instructions). The graph is a visualization which allows 

the user to see connections between the basic blocks. The 

ability to see the program in basic blocks can provide visual 

cues to help a person divide the program into meaningful 

modules. Some tools, such as Hex Rays’ Interactive 

Disassembler [28] provide the ability to step through a control 

flow graph view as shown in Figure 1. 

In addition to control flow visualizations, there are other 

visual aspects to reading code. Brooks [8] describes the use of 

beacons, which are textual, structural, or visual referents that 

help people reading code match up mental representations of 

programming structures with actual implementations in the 

program.  

4) Instrumentation Data 

Data from system probes can provide reverse engineers 

additional sources of information. Running systems may have  

directly observable changes, such as windows that open, files 

being created in a folder, or system data structures being 

written to. Other system changes can be detected by using 

programs or tools to gather the data. If built-in operating 

system monitoring tools do not provide enough information 

(or are not trusted), reverse engineers can use third-party tools 

or write their own tools to support introspection.  

 

 
Figure 1. Graph-based debugging in IDA Pro (from [28]) 

 

Reverse engineering tools can be roughly categorized as 

probe tools (or sensors) and control tools. Probe tools provide 

information about the program, the operating system, 

hardware, and other parts of the system directly. Control tools 

change the functionality of the program, system, hardware, 

etc. in order to help the reverse engineer gather information. 

Both probes and control tools provide the reverse engineer 

information about the system and the program under 

investigation. 

For example, a reverse engineer can run a program to list 

running processes and threads before starting an application, 

then check which processes have changed after starting it. 

Another tool could indicate if a program has encrypted 

sections when stored on disk or reconstruct mangled import 

functions that a program relies on [32]. Other tools allow 

viewing the file header data in a program [44], monitoring and 

capturing network packets from a system’s network interface, 

or capturing system memory to detect changes to system data 

structures [93]. Some can detect and capture other programs 

that open and close quickly to avoid being detected [26]. 

III. Situation Awareness and Understanding 

Situation awareness is a term used to describe the degree of a 

person’s perception of relevant information elements in their 

current task environment, their integration of this information 

with their task goals, and their ability to project the state of 

these elements into the future [18]. The term is commonly 

used to describe a person’s attention to data in the 



 

 

environment that is relevant to the task at hand, the overall 

mission and personal goals [66]. 

Various methods have been used from the disciplines of 

knowledge engineering and human factors psychology to 

measure situation awareness and to better understand decision 

making in complex environments. Such approaches have been 

used to study the cognitive work of pilots [18], air traffic 

controllers [73], [19], unmanned aerial vehicle operators [16], 

nuclear power plant workers [62], electronic warfare 

technicians [47], nurses [14], fire fighters [39], and many 

other types of workers. The underlying theme of these 

methods is the assumption that when people perform tasks, 

their understanding and awareness of what is going on is a 

primary input into the decisions they must make in the course 

of the task.  

Software reverse engineering requires the reverse engineer 

to understand the task environment in great detail. These tasks 

involve the heavy use and understanding of automated 

technologies, namely computer programs. The work is often 

security-related and as such can be geared toward determining 

whether a system or program should be trusted by other users. 

Some human factors studies looked at the link between 

subjects’ understanding of a particular technology and their 

ability to perform in tasks requiring the technology [67], [68], 

[69]. In these studies, the subjects’ understanding of the 

technology used made a difference in how well they were able 

to work with it. Software reverse engineering tasks leverage 

similar situation understanding requirements on reverse 

engineers.  

There are several measures of situation awareness and 

situation understanding, but there is no agreement on 

measures that are general across task environments [18], [66], 

[81], [82]. Additionally, in many task domains, people 

performing tasks with automated systems are actively 

engaged with and must interact and provide inputs to the 

systems [90].  

Often, with highly complex automated systems, the role of 

the person using the technology is relegated to a “monitor, 

exception handler, and manager of automated resources” [65]. 

However, awareness and understanding of the “state” of an 

automated system like a program requires more than the 

passive monitoring of the state variables. For reverse 

engineers to gain situation understanding of their task 

environment, they have to identify the elements of state 

information and comprehend the processes involved in those 

programs [65].  

IV. Sensemaking 

Where situation awareness refers an understanding of 

perceptual elements in the environment, sensemaking refers 

to the processes that enable one to come to that understanding 

and maintain it [40]. Sensemaking is a term used to refer to 

humans’ capability to actively comprehend the significance of 

ambiguous events and data [92]. The sensemaking process is 

typically described as an ongoing integration of knowledge 

from a mental model of a situation, available data about the 

situation, and perceptual information from the environment. It 

is also regarded as the basis for intuitive decision making [39]. 

Sensemaking is the comprehension process that takes place 

when expectations turn out to be incorrect. In a task, when 

people do not have to integrate surprising results, their 

reasoning and actions are considered operating under business 

as usual. However, when they experience surprise, they have 

to make sense of the new information. Sensemaking hinges on 

instances where data from the environment is inconsistent 

with a previous understanding of the world.  

The sensemaking process is described by [38] as 

integrating what is conjectured with what is known, 

connecting what a person infers and actually observes, finding 

explanations for ambiguous data, diagnosing ambiguous 

symptoms, and identifying problems (Figure 2). Since these 

different functions describe a great number of cognitive 

capabilities, there is a possibility that sensemaking actually 

describes a class of reasoning capabilities encompassing a 

number of separate but related process.  

 

 
Figure 2. Sensemaking Functions Mapped from [38] 

 

During the sensemaking process various cognitive 

processes allow a person to simultaneously reason about data 

and the semantic meanings in that data [38]. When a person 

successfully makes sense of observable data, that person is 

said to understand the data as well as the contextual frame of 

reference of the data.  

When a person has inconsistency between data from the 

task environment and a mental model, that person is faced 

with the problem of whether to re-evaluate the current 

understanding of the situation or to maintain the dissonance 

caused by this inconsistency. Trouble in this integration 

process often leads to poor decisions and reasoning errors, 

exemplified by the number of failures leading to George 

Custer’s defeat at Little Big Horn [23]. Previously-held 

beliefs can also prevent a person from integrating new 

knowledge, leading to many types of decision biases and 

predictable errors in decision making [71], [34], [35], [42], 

[87]. These errors force the person to choose between 

distrusting the conflicting data, distrusting the data sources, or 

maintaining an inconsistent belief set.  

The process of reconciling and integrating sources of 

information and data from the environment comes up in many 

applications of intelligent behavior, but the atomic processes 

by which humans integrate knowledge and sensory 

information is still not yet well understood [5] [7]. 

In Klein’s data-frame sensemaking model [38], 

problem-solvers simultaneously recognize and construct 

frames from available data and manage current frames of 

reference. A frame is a representation for a hypothesized 

mental structure imposed upon data to organize it.  

A frame, used in this sense, helps people create constraints 

on internal reasoning processes which help them reason about 

their task environments without having to consider all 

available data or possible states [37], [46]. The processes of 

managing a frame in the Klein model are forming a frame, 

elaborating what data is in a frame, questioning an existing 

frame, and reconstructing a frame. When people “manage 
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frames” they are defining, connecting, and filtering the data 

they attend to and seek out. 

Zhang, et al. [95] present a conceptual model of 

sensemaking as used in intelligence analysis tasks (Figure 3). 

This model also describes a high-level process of integrating 

task and problem knowledge with existing knowledge 

structures. It describes sensemaking as:  

1. Identifying gaps in data and structure 

2. Actively seeking for information and structure 

3. Accretion, tuning, and restructuring mental models [63]  

 

 
Figure 3. Model of sensemaking (adapted from [95]) 

 

The first activity, identifying gaps, involves learning that 

there are inconsistencies between held knowledge and 

perceived sensory information. This first activity does not 

always happen though because of human limitations. For 

instance, many times people have difficulty appropriately 

attending to information from the environment which 

contradicts their previously held mental model [36].  

The second activity, seeking information and structure, 

involves developing hypotheses to account for the disparity, 

seeking data to build, support, or refute the hypotheses, and 

seeking a structure to integrate all of the information.  

The third activity involves accretion, tuning, and 

restructuring of the mental model. Accretion is the addition of 

new information to prior knowledge, tuning is an adjustment 

to the person’s background knowledge that previously 

existed, and restructuring involves re-evaluating the entire 

frame of reference. According to the Zhang’s model [95], 

these activities take place until a reasonably explanatory 

mental model is completed or until the decision task is 

complete. 

A. Representing Mental Models 

Empirical studies suggest that problem solvers query and 

manipulate mental models during task performance [34]. 

These mental models are internally-stored representations that 

enable problem solvers to reason about tasks and task 

environments. Their presence and use is supported by a 

number of systematic and predictable errors in reasoning 

which can be detected through controlled experiments [35], 

[42], [87].  

A person’s awareness of relevant data in the environment 

depends on the quality of that person’s mental model or 

background knowledge of the environment [15], [34]. Experts 

performing a task can dramatically outperform novices at the 

same problem because of the content and structure of their 

background knowledge [15]. Because novices lack experience 

and background knowledge, they have trouble determining 

which data from the environment is relevant to the task. This 

is especially pronounced when the task involves processing 

large amounts of information [94], [95]. 

1) Procedural Knowledge 

The organization of a person’s mental model, and thus the 

ability to determine which data is relevant or significant 

depends on mentally stored patterns of interaction [56]. 

Domain-specific patterns of interaction can be sequences of 

actions or higher-level sequences of more general behaviors 

[10], [11]. An example of such a pattern of interaction is a 

person’s experience troubleshooting automobile problems. 

Troubleshooting in the automobile maintenance domain may 

be similar enough to troubleshooting in other domains that a 

person may have significant knowledge transfer when 

troubleshooting in other domains [12]. 

Other stored mental patterns of interaction constitute 

domain-dependent patterns or schemas, and may not be 

transferable outside of the particular task environment. An 

example of a domain-specific pattern is knowledge of the 

sequences of key presses that enable a special move, like 

throwing a Hadoken fireball in the Street Fighter II video 

game. The knowledge and mastery of many patterns of key 

presses does not transfer to the mastery of tasks in other 

domains, though it may transfer to the mastery of other video 

games involving similar button combinations. 

When solving a problem, people can match mentally stored 

patterns of actions with aspects of the current situation. This 

matching enables them to predict likely future states, and to 

develop general task strategies to accomplish the task. 

Additionally, more robust stored mental models enable people 

to specify what sequences of inputs or actions are needed to 

accomplish each function in their current task strategy [10]. In 

solving a problem, problem solvers are able to select and 

apply specific sets of task operations (or methods) in order to 

achieve higher-level goals and the sub-goals from which they 

are structured [52]. This indicates that procedural patterns of 

knowledge are composed of organizations of goals, operators, 

methods, and selection rules within a domain [9].  

Experts at a task tend to have more refined and better 

organized procedural models about their tasks, which enable 

them to perform tasks much more quickly than novices. 

Experts have a more accurate representation of what data 

elements constitute a meaningful state in the problem space. 

Experts in a task domain also have better situation 

understanding and better situation awareness as tasks unfold. 

They are better at monitoring their progress toward problem 

solutions and at estimating the difficulty of tasks than novices 

[15], [70]. 

2) Declarative Knowledge 

Experts also tend to have more refined declarative knowledge 

models than novices, which allow them to perform tasks more 

accurately [54]. Declarative knowledge consists of facts about 

a domain and the organization of those facts. This includes 

semantic content, such as concepts and facts, and episodic 

content, which includes knowledge about events, or when and 

where knowledge was acquired [77], [85].  

Declarative knowledge has also been referred to as explicit 

knowledge [51], information [86], taxonomy or ontology 

[25]. Declarative knowledge enables people to match data 

elements and affordances in the task environment with stored 

procedural patterns [2]. To gauge where they are in the 

process and select future goals, strategies, and actions, people 
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can use the match between their declarative knowledge of the 

domain and their stored patterns of interactions or procedural 

schemas. These matches between the concept space and the 

procedural space allow them to infer explanations about 

events that have already happened, predict future states of the 

task environment, and select goals, operators, methods, and 

selection rules to perform tasks in the domain environment. 

B. Domain-Specific Knowledge Schemas 

Both declarative and procedural knowledge tend to be 

organized around memorized patterns [63], [85]. In a famous 

study of memory, chess masters were able to reconstruct most 

or all of the positions on a chess board after having seen the 

board for only five seconds. When novices were given the 

same task, they could only recall two to three pieces. 

However, if the pieces on the chess board were arranged 

randomly instead of in a pattern that chess players typically 

encounter, the expert lost the advantage in reconstructing the 

board [15]. These results indicate that the experts were not 

recalling individual pieces on the board but rather stored 

patterns of pieces that they had experience with and could 

easily reconstruct from memory. Other studies indicate that 

people reconstruct information from their indexes into 

episodic memories of an environment [77], [85].  

Problem solvers construct, modify, and reconfigure their 

mental models constantly. In knowledge-lean tasks, which are 

tasks without a lot of semantic content, problem solvers are 

able to tune, chunk, and group items to strengthen their 

associations in memory, and can remember problem states 

they have seen previously. Through methods like these, they 

rapidly improve their ability to select task operators with 

experience [3], [24], [88].  

In knowledge-rich tasks, like software reverse engineering, 

some argue that a finite set of generic procedural tasks can be 

combined with well-organized knowledge-models to create 

intelligent behavior in the task [11][12]. 

V. Eliciting Mental Models 

The field of knowledge engineering has produced and refined 

several methods to extract and represent the mental models 

and cognitive processes of people solving problems in various 

work domains [47], [73], [75], [90]. In some cases, the 

methods are used to uncover the processes underlying human 

intelligence and in others they are aimed at capturing the 

knowledge about a domain.  

A. Cognitive Task Analysis 

For either purpose of knowledge elicitation, one method for 

gaining knowledge about task processes is through a task 

analysis. The task analysis is aimed at breaking down a 

complex task into smaller tasks so that each step can be 

analyzed or so that work or automation supports can be 

designed to make the work more efficient or cost-effective. 

Hierarchical decomposition of a task has been found to be 

useful because it is the means by which humans work with 

information from complicated problem domains [31]. 

Hierarchically decomposing a task into its component 

structures is both a modeling challenge and an in-depth 

analytical exercise [11].  

Background knowledge about a reverse engineering task 

can be discovered through document analysis [20]. Because of 

the extensive background knowledge required of reverse 

engineers, collecting, organizing, and representing factual 

knowledge about the reverse engineering domain is a large 

undertaking. One approach to capturing declarative 

background knowledge is to gather sources, such as textbooks 

and articles which are used as training and education 

materials, and specifying the semantics of relevant reference 

material as an ontology specification in a formal description 

language [25]. 

There are limitations with explicitly capturing background 

knowledge from source texts and training materials. First, 

extensive ontology modeling is extremely time consuming 

and potentially error-prone. Second, there are still not 

practical techniques available to verify and validate large 

declarative knowledge bases. Third, capturing all of the 

background knowledge about each of the knowledge 

sub-domains in reverse engineering might be too much to 

solve a particular type of task. As a knowledge base gets 

larger and larger, an agent or automation support tool that 

reasons over that knowledge base will need to have more 

intelligent and efficient selection rules to sort and filter 

through the possibilities entailed by the knowledge base [12], 

[49]. 

Cognitive task analysis methods can be used to determine 

the knowledge that is required for well-defined subset of a 

cognitive work domain. Often a cognitive task analysis will 

contain multiple methods which reinforce each to triangulate 

results and reinforce the reliability of the findings [47]. 

Depending on the particular methods used, a cognitive task 

analysis methodology can extract knowledge at a very high 

level or in great detail. 

Subject matter expert interviews are often used in cognitive 

task analysis to isolate the appropriate terminology and to 

scope the investigation to relevant subsets of domain tasks 

[39]. Structured interviews can provide insight and rich 

qualitative data, which can provide reference knowledge for 

other task analysis methods. They can also aid in the selection 

of a prototypical task to guide further investigation. 

B. Verbal Protocol Analysis 

Another procedure often included in task analyses is a verbal 

protocol analysis. A verbal protocol is a method that involves 

observing a person performing a task while he or she thinks 

aloud [21]. When combined with qualitative interview data 

from experts, this type of analysis allows researchers to form 

several types of inferences. Researchers can use the recorded 

verbal data to map participants’ actions to concepts the 

participants use in their task. It can also be used to identify 

beacons in the task environment, and to infer goals, sub-goals, 

and reasoning strategies used in the task [59].  

Timing data is also very useful. For example, when a 

participant stops speaking during a think-aloud protocol, this 

can provide insight into the person’s retrieval from long term 

memory, and can indicate steps in the task that may be more 

cognitively demanding than others [21].  

The number of inputs and outputs a system handles 

dramatically increases the number of possible states, which 

can make modeling problem solving in knowledge-rich tasks 

like reverse engineering challenging. Because of the large 

state space, enumerating the state space over all available 

variables is potentially not feasible. For this reason, 

knowledge engineers must understand what makes up an 

actual mental representation of a system, what constitutes a 

state in the task environment, and with what variables those 

states are constructed.  

Researchers can use a verbal protocol to learn about 

heuristics or short-cuts people use to make faster decisions 



 

 

when their available choices are ambiguous. People develop 

domain-specific heuristics with experience in a task or 

through instruction. Heuristics enable people to filter through 

non-essential information and prune the space of actions or 

states to those that seem reasonable for the task. Since 

heuristics are often specific to a problem domain [31], [46], 

[54], they represent an essential component of background 

knowledge about the domain [31]. Additionally, learning 

about problem solving heuristics may provide insight into 

common or generic tasks which have structure and functional 

properties that can be exploited with more general 

representations [11].  

VI. Sensemaking in Reverse Engineering 

Software reverse engineering involves observing and 

analyzing a program in order to discover what it does, how it 

works, and at a higher-level, what the goals of the program’s 

designer were [13]. Tasks in reverse engineering require the 

ability to quickly integrate background knowledge with the 

current situation and use a collection of tools, skills, 

processes, knowledge, logic, and creativity to understand the 

structure and functionality of complex software systems [17]. 

It can be seen as a blend of intuition and analytics, where 

expert reverse engineers can move between both types of 

reasoning as the need arises.  

Some conceive reverse engineering as a process of 

abstraction from low-level details about software to high-level 

concepts [22]. Others conceive it as a set of interconnected 

analysis activities aimed at understanding a program to 

achieve some goal [17]. Tilley [84] describes reverse 

engineering as transforming software artifacts into a mental 

model through “mental pattern recognition” and forming 

“more abstract system representations.” Muller & Kienle [50] 

describe these abstraction levels as source text, structural, 

functional, architectural, and application. 

While reverse engineers relate observable low-level 

software representations to higher-level concepts, they also 

must monitor and seek information at very concrete levels. 

Descriptions of reverse engineering as simply a process of 

moving from concrete to abstract representations miss the 

point that semantic concepts exist at low and high levels of 

abstraction, and that neither type is reasoned about in 

isolation. Studies suggest that reverse engineers work at 

multiple levels of abstraction simultaneously to understand 

the code and switch between levels of abstraction as their 

comprehension needs dictate [8], [45], [53], [91].  

Reverse engineering involves an active observation 

process, and its activities closely resemble those from the 

scientific method. The process of learning about a program is 

analogous to how a biologist learns about the properties of a 

cell or a physicist learns about properties of matter. 

Sensemaking in reverse engineering requires eliciting 

information about the program, developing representational 

frames from data and background knowledge, and integrating 

representational frames to new data and the person’s 

knowledge [38], [83], [95].  

A. Sensemaking Functions in Reverse Engineering 

Reverse engineers must possess detailed “how-to” knowledge 

about how to accomplish many different subtasks. At a 

general level though, the process of reverse engineering has 

much in common with the process of scientific discovery. 

These generic functions of reverse engineering programs 

canonically involve the interleaving of: 

 Goal construction  

 Planning  

 Carrying out a plan (business as usual) 

 Generating hypotheses or questions 

 Determining needed information 

 Experimentation to seek data  

 Instrumentation to isolate unavailable data 

 Evaluating and integrating  

 Updating the mental model  

 

For a mental reference, the top-level of a hierarchical 

extended finite state machine representation of these functions 

is shown in Figure 4. In the diagram, each state can be 

expanded into its own encapsulated state diagram to further 

outline the processes underlying each state. These functional 

state diagrams are presented as a framework to organize the 

cognitive task analysis work and the information that comes 

from it. 

 

 
Figure 4. Sensemaking Functions in Reverse Engineering 

 

1) Goal construction (Construct-Goal) 

One of the first things needed in solving a reverse engineering 

problem is a goal. In simple planning problems like the blocks 

world domain, or Towers of Hanoi, it is taken for granted that 

the goal is present, and that a suitable representation of the 

goal state exists. In more complex problems, sometimes the 

goal is not known from the outset or is only known in a very 

vague way. The goal may come from information in the task 

environment such as a prompt, or indirectly, such as when the 

person figures out what should be done by interpreting and 

synthesizing clues in the task environment. 

Because the amount of available data in a reverse 

engineering task is enormous and exists across many different 

parts of a system, one of the first steps is to identify or develop 

specific goals to constrain the analysis. Isolating the overall 

reverse engineering problem to smaller sub-goals provides a 

set of constraints that can help reverse engineers filter the data 

they need to look at.  

These goals are many times constructed in situ by the needs 

that arise in the course of analyzing the reverse engineering 

problem, planning a course of action, and carrying out the 



 

 

plan. If a person notices things that “look weird” in the 

program, it is often an indication that the program is 

performing unexpected(and possibly malicious) functionality 

which changes the current goal for the reverse engineer, and 

which may change the reverse engineer’s top-level goal as 

well. 

2) Planning (Plan-Approach) 

Once the goal is developed and understood, a planning 

process is developed to construct one or more sequences of 

actions to move towards completion of the desired objective. 

One can also construct sequences of actions that are derived 

backward from the goal state. Attempts to construct partial 

and fully-specified sequences of actions are all contained 

under the umbrella of planning [64].  

Planning in reverse engineering also involves the selection 

of alternative courses of action when there are multiple 

competing ways to accomplish a task or subtask. Creating a 

plan to get access to all encrypted instructions is an example 

of a plan in a reverse engineering task, and there are multiple 

ways to gather that data, each of which requires varying levels 

of effort, knowledge, skill and time. 

3) Carrying Out a Plan (Carry-Out-Plan) 

Carrying out a plan is the process of following the sequence of 

planned actions, and is termed “business as usual.” As long as 

the person can execute the plan, there is no trouble. As the 

plan is carried out, the person will need to construct sub-goals 

and sub-plans in order to proceed along a sequence of actions. 

For this, they may have to go back to the process of goal 

construction and planning in order to solve intermediate 

problems along the way. 

At some point, the reverse engineer may encounter a 

problem or experience some sort of surprise which stalls their 

progress. This could be arriving in an unexpected state in the 

task environment or perceiving data that indicates a problem 

in reaching one of their goals (based on prior knowledge [38], 

[39]. This is essentially where sensemaking processes begin 

in the overall problem solving process. 

4) Generating Hypotheses (Generate-Hypothesis) 

Reverse engineers also develop questions and hypotheses 

about the program they are studying [8]. Reverse engineering 

has been referred to as “the iterative refinement of 

hypotheses” about a program [84]. Sometimes this may be 

done implicitly during the task. For instance, a reverse 

engineer might wonder, “How would the control flow change 

if I switched the zero flag at this instruction?” or “What will 

the EAX register hold when this function returns?” 

Hypotheses can also be explicit, as in hypotheses specified in 

reverse engineering test plans. 

As reverse engineers become more familiar with the 

patterns of interaction of the system being studied, they can 

develop on-the-fly hypotheses, like “I think there might be a 

structured exception handler that the code is invoking which 

makes the program terminate here.” The recognition and use 

of this type of domain-specific structural schema in 

generating hypotheses and questions is characterized as one of 

the features of a sensemaking process [56]. 

5) Determining Needed Information (Determine-Test) 

Once a hypothesis or question is established, there needs to be 

some way to answer the question or to support or refute the 

hypothesis. This results in a “data loop” as shown earlier in 

Figure 3 [56][95]. In the data loop, a hypothesis has been 

constructed, and a test must be developed to determine 

whether the hypothesis should be supported, refuted, or 

whether it should be suspended until further testing can take 

place.  

 The test can be generated through a “what-if” type of 

inference where the hypothesis is assumed to be true, the 

consequents of that hypothesis being true are also assumed, 

and then the person determines how to test whether or not 

those consequents hold. The generation of a hypothesis and 

the generation of a test are both complicated phenomena 

which need more investigation before developing an atomic 

model of generativity. This is a task for future research. 

The process to determine the needed information and a test 

to gather that information can produce facts about the 

environment, but it can also produce additional concepts or 

relationships, such as constraints in how data are related. In 

this way, the function to determine the needed information 

and to construct a test could account for the “structure loop” in 

[95] as well as the “data loop.”  

6) Experimenting to Seek Data (Seek-Data) 

Once a reverse engineer has a structure (a set of hypotheses), 

that structure brings a number of inferences and consequents 

that should hold if those inferences turn out to be true. Like 

experimentation in science, reverse engineering involves 

seeking confirming or contradictory evidence about a 

hypothesis using data from the program environment.  

Once the idea of the test is constructed, the data seeking 

phase is carried out, which is another planning process, 

whereby a sequence of actions is constructed that can gather 

the needed data from the environment. To gather data, reverse 

engineers have to isolate a behavior of interest, either by 

providing the program an artificial input like changing a flag 

on a register, or by observing the behavior in an isolated way.  

An example of this is making a plan to test whether or not a 

program is spawning another process. After the hypothesis is 

constructed (that the program is spawning another process), 

and a test is developed based on an inference from a structural 

understanding of the environment (if the program is spawning 

another process then another process will be present at some 

time after the program is run), then a plan can be carried out to 

gather that data: 

1. Run a program to prevent processes from exiting 

2. Run the target program 

3. Run a separate program to monitor open processes 

4. Determine if another process was run 

 

Through this process of interaction, data seeking, and 

planning in the environment could return information as a 

result, which can be used to generate new facts in declarative 

knowledge about the environment, about the structure of 

elements in the environment, or about more abstract concepts 

related to elements in the environment.  

7) Instrumentation (Instrument-System) 

If the necessary data is not readily available, a process of 

instrumentation must take place. Instrumentation refers to the 

active development of capabilities to gather data about a 

program or system. In many scientific fields, instrumentation 

involves the placement and measurement of sensors that 

measure physical, chemical, or electrical properties.  

In reverse engineering tasks, sensors or probes are not 

always available for use, and often the properties sought are 

more highly structured than single variables. Because of this, 



 

 

skilled reverse engineers develop their own tools through 

adapting existing hardware or software tools or programming 

their own software to solve measurement and information 

gathering tasks. Programming skill and troubleshooting skills 

are therefore fundamental capabilities of reverse engineers. 

8) Evaluating and Integrating (Evaluate-Argument) 

Once the reverse engineer has obtained information to fill in 

gaps in their knowledge, they must interpret the data in order 

to assess its quality, assess whether it answers the question 

adequately, and assess whether and what new knowledge 

should be added to their existing knowledge structures.  

In informal experiments (like formal ones), things can go 

wrong such as when other processes affect the way program 

behavior represents itself, or when the experiment only works 

for certain test conditions. The process of evaluation and 

integration also involves determining if the data or its sources 

should be trusted. For example, the person conducting a test to 

see if processes are present may think: “if a rootkit is on my 

system, it may be hiding the presence of a process from my 

analysis program.”  

Given this evaluation, when a person attempts to update the 

mental model, they could dismiss the idea or investigate it 

further if it causes too much dissonance or trouble with other 

knowledge about the task environment. 

9) Updating the Mental Model (Update-Knowledge) 

Updating the mental model consists of the processes of 

accretion, restructuring, and tuning knowledge in a mental 

model outlined in [63] and included in the model in [95]. 

Through this process, new knowledge is added, existing 

knowledge is modified, and relationships between pieces of 

knowledge are changed, depending on the type of knowledge 

received from the evaluating phase. 

Hypotheses, experiments and observations can provide 

reverse engineers with knowledge about the system, but do 

not provide a complete model of a large program. With large 

programs, reverse engineers must quickly discover the most 

relevant pieces of knowledge about the program. The updated 

mental model should enable the person to filter through large 

amounts of data to determine what is relevant better than they 

were able to during previous loops. 

Other major tasks that require an updated or emerging 

mental model of the program include naming concepts, 

assigning concepts to locations in the code, and recognizing 

assigned concept locations [60].   

VII. Knowledge Modeling for Reverse 

Engineering 

In order to understand the automation needs that would 

support reverse engineering tasks, it is important to develop 

knowledge requirements for those tasks. Knowledge is 

typically divided into procedural and declarative knowledge, 

which serve different purposes. Declarative knowledge is the 

explicit encoded knowledge that can be recalled and recited. 

This consists of concepts in the domains, facts, and facts about 

how concepts relate to each other. On the other hand, 

procedural knowledge is composed of how-to knowledge that 

allows a person to perform a task when they come across a 

situation.  

 

A. Modeling Declarative Knowledge 

Von Mayrhauser and Vans [91] studied programming 

knowledge and divided what is arguably declarative 

knowledge into separate conceptual models for the program, 

the situation, the domain (what they called the top-down 

model), and background knowledge. In the top-down model, 

programmers chunk information about program, instructions, 

modules, the problem domain, and theorized goals and plans 

of the programmer, and synthesize it all into their existing 

knowledge base. The knowledge base includes schemas of 

concepts and concept families that are used in developing the 

program model, situation model, and domain model of a 

program [53], [91]. 

The declarative knowledge that a reverse engineer must 

understand is extensive. Software reverse engineering 

requires knowledge of thousands or hundreds of thousands of 

facts about how code is written, compiled, linked, and loaded; 

the operating system which manages running programs; the 

processor architecture on which the program and operating 

system runs; and sometimes other hardware, firmware, and 

input/output devices that can be involved or invoked. These 

facts provide the reverse engineer the ability to make 

inferences about how changes made in one part of the system 

can affect other parts of the system.  

Since the knowledge required by a reverse engineer is 

broad as well as deep, reverse engineers’ declarative 

knowledge models will likely be very organized and 

sophisticated. To model and simulate problem solving (and 

sensemaking) in reverse engineering, this extensive base of 

knowledge will need to be considered by either limiting the 

scope of the model or expanding its encoded knowledge. 

Some sub-domains of declarative knowledge are shown in 

Table 1. 

The declarative knowledge models of reverse engineers 

help them determine what elements in the environment are 

relevant to their task. Declarative knowledge also provides 

reverse engineers the frame of reference in their planning 

tasks and helps them determine what data to seek from the 

environment, how to develop a hypothesis, how to isolate the 

needed data, and how to interpret the results of their 

experimentation.  

 
 

Debugging and troubleshooting skills  

Computer programming  

Program compilation and interpretation  

Object file linking and executable loading 

Program execution  

File and file header formats 

Library, API, and operating system calls and internals 

Assembly language (multiple instruction sets)  

Firmware and hardware 

Processor structure and function 

Communication protocols 

Anti-debugging and anti-reverse engineering tricks 

Table 1. Declarative Knowledge Sub-Domains in 

Reverse Engineering 

 

In addition to factual knowledge, reverse engineers’ 

declarative knowledge models contain causal relationships 

about the data, which can be represented as constraints on 

existing knowledge, or as predicate statements on constant 

variables. The causal relationships may take the form of an 

abstract cause and an abstract effect and concrete 

instantiations of the causal concept and the effect concept. 

Sensemaking functions can exist across different levels of 



 

 

sensory cues, information, and background knowledge 

(Figure 5). 

  

 
Figure 5. Integrating cause and effect 

 

Reverse engineers’ declarative knowledge models of a 

program as it runs are augmented with structural information 

from the environment, including the layout of memory, 

patterns representing programming constructs; functional 

information, such as input and output system calls used by the 

program; and behavior information such as whether the 

program writes to disk or communicates over the network. 

Many types of structural information can be represented either 

in terms of cause and effect or in terms of concepts in the 

domain.  

The set of concepts in a task domain is a central component 

to a person’s declarative knowledge [63]. A concept 

represents a template or class which describes a set of objects 

or entities. Often the template concept is based on an object’s 

categorization with a group or its similarity to a prototypical 

member of that group. Categorizations among concepts are 

often defined by shared attributes between similar or related 

entities [64].  

A schema is a grouping of concepts by shared or similar 

attributes that captures sets of relations and attributes that an 

entity might have [4]. In a schema, data members are 

organized by their attributes, and new entities are classified 

into categories based on how they match the attributes of 

available categories [55], [63].  

As discussed earlier, a frame is another representation that 

is used to organize background knowledge [38], [48]. A frame 

is a “network of nodes and relations” that represents a 

person’s background knowledge of a domain. These frames 

can be organized into a frame system which identifies how the 

knowledge is structured. Each frame is made up of a number 

of slots which are blank or unfilled attributes. The slot may 

contain both a value, and a slot type which specifies what kind 

of data is able to occupy that slot.  

Other means to organize representations of declarative 

knowledge are categories, composite objects, components 

(especially concerning systems or devices), networks, and 

conceptual constructs [4], [12], [49], [64]. Each of these 

representations has its own formalism for encoding 

knowledge, but each serves as a way for people to formally 

represent mental objects and their relations to other objects. 

One example to illustrate a potential formalism for 

encoding knowledge from a task analysis is a model in the 

ACT-R cognitive architecture [1]. In the ACT-R theory 

(which is contained in the ACT-R software), knowledge in 

memory is divided into declarative knowledge and procedural 

knowledge representations.  

In ACT-R, declarative knowledge is composed of chunks, 

which can be retrieved from long-term or short-term memory. 

Chunks are pieces of memory, which have a chunk-type and a 

set of slot and value pairs. A chunk-type is a template for a 

chunk which declares what types of slots can be held by a 

chunk of that type. A slot is an attribute which describes some 

property of a mental object or entity. A chunk’s slot can take 

on various values, and when it does so it represents specific 

knowledge about an entity’s attributes.  

In Figure 6, a chunk-type is declared called register, and all 

registers can have a number-bits slot and a register-type slot. 

After that, three chunks are added to ACT-R’s declarative 

memory module which represent the EAX, AX, and CR0 

registers on the Intel x86 processor architecture.  

 

 
Figure 6. Declarative knowledge in ACT-R 

 

The ACT-R declarative knowledge does not model formal 

domain property constraints as would be the case with formal 

description logic or first order logic. However, through the 

combination of encoded declarative knowledge and encoded 

production rules, sophisticated task behavior has been 

modeled in various task and problem-solving domains [2].  

B. Modeling Procedural Knowledge 

Procedural knowledge in ACT-R is defined by production 

rules, which are patterns consisting of a left-hand side and a 

right-hand side. The left-hand side of a production rule 

contains a set of state conditions which represent a pattern of 

state variables to be matched by the agent performing the task.  

The right-hand-side of a production rule represents a set of 

actions to be accomplished by the agent. While an agent is 

engaged in a problem-solving task, if the state of the 

environment meets one of the sets of conditions defined on the 

left-hand side of a production, the actions on the right-hand 

side of that production fire. The action side of a production 

often changes the state of the variables in one or more slots in 

the chunk listed on the action (or right-hand-side) of the 

production (Figure 7).  

Essentially productions in ACT-R create a state-machine 

representation of a problem-solving process. Particular 

productions in a cognitive architecture like ACT-R represent 

states in an extended finite state machine and the condition 

rules and patterns of production firing represent the transition 

between those states. Modeling tasks in a cognitive 

architecture provide the modeler a way to simulate and predict 

human behavior in a cognitive task, and often seek to be 

“cognitively plausible” rather than optimal [2].  
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Figure 7. A simple ACT-R production rule 

 

Modeling cognitive tasks at the level of detail required by 

ACT-R requires many commitments to architectural and 

attentional details which may not be required in other 

production-based expert systems or artificial intelligence 

frameworks. However, it has the advantage of being able to 

model a task in a way that allows the investigation of how 

humans actually perform the task.  

VIII. Conclusion 

This paper provided an overview of the current state of 

research in sensemaking, situation understanding, and 

situation awareness and how these concepts can be applied to 

the problem of reverse engineering. This paper also offered an 

overview of a structured cognitive task analysis methodology 

to enable elicitation of knowledge that reverse engineers use 

in daily practice. It then described knowledge representation 

formalisms suited to the modeling of cognition in context, 

namely the ACT-R cognitive architecture. Finally, it 

presented a background on various processes in software 

reverse engineering in the context of the sensemaking 

components that those tasks levy on individuals. 

Modeling and simulating intelligent behavior in 

complicated, knowledge-rich tasks like software reverse 

engineering is a challenging undertaking, but the steps here 

presented can enable the cyber security and modeling and 

simulation communities to produce more robust models of 

intelligent reverse engineering behavior. These steps include 

isolating the domains of interest, isolating the knowledge 

required in those domains, verifying the knowledge needed to 

complete reverse engineering tasks, and then developing and 

refining formal models of conceptual and procedural 

knowledge, such as ontologies and production rules, until they 

can handle and simulate intelligent behavior in the task.  

Areas for future research that would improve researchers’ 

ability to model problem-solving behavior in knowledge-rich 

tasks like software reverse engineering include:  

 The development of better tools and methods to automate 

the extraction, verification, and validation of declarative 

knowledge from documents 

 Streamlined methodologies to extract and represent 

relevant declarative and production knowledge from 

examples of task behavior 

 Better and more refined development processes to model 

declarative and procedural knowledge in complex task 

environments  

With the current state of cyber security and the constant 

threat from cyber attacks, increasingly intelligent tools and 

automated assistance are more important than ever. 

Executable reverse engineering models could feasibly help 

engineers test new software before it is released to the world, 

provide intelligent assistance to those performing 

security-related work, or provide intelligent tutors that are 

sensitive to the needs of new reverse engineers and cyber 

security professionals.  
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