
J Intell Robot Syst manuscript No.
(will be inserted by the editor)

Dynamic Behavior Sequencing for Hybrid Robot
Architectures

Gilbert L. Peterson · Jeffrey P. Duffy ·
Daylond J. Hooper

Received: 17 May 2010 / Accepted: 27 December 2010

Abstract Hybrid robot control architectures separate planning, coordination, and

sensing and acting into separate processing layers to provide autonomous robots both

deliberative and reactive functionality. This approach results in systems that perform

well in goal-oriented and dynamic environments. Often, the interfaces and intents of

each functional layer are tightly coupled and hand coded so any system change requires

several changes in the other layers. This work presents the dynamic behavior hierar-

chy generation (DBHG) algorithm, which uses an abstract behavior representation to

automatically build a behavior hierarchy for meeting a task goal. The generation of

the behavior hierarchy occurs without knowledge of the low-level implementation or

the high-level goals the behaviors achieve. The algorithm’s ability to automate the

behavior hierarchy generation is demonstrated on a robot task of target search, iden-

tification, and extraction. An additional simulated experiment in which deliberation

identifies which sensors to use to conserve power shows that no system modification

or predefined task structures is required for the DBHG to dynamically build different

behavior hierarchies.
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1 Introduction

Many successful autonomous system architectures follow a layered approach, decou-

pling immediate responses from longer-term objective reasoning [Urmson, et al.(2008)].

These systems receive a high-level tasking and attempt to complete the task au-

tonomously using a combination of deliberative planning and reactive execution. How-

ever, many of these systems require code restructuring when the environment or func-

tional specifications change. The single purpose design often makes the reactive behav-

iors and their hierarchies specific to the robot and task [Scheutz and Andronache(2004)],

and the connections between different layers of the architecture [Gat(1997)] are tightly

coupled (where small changes in one layer may result in significant changes in the

others). Because of this, a change in purpose of the robot requires significant redevel-

opment because the hierarchies are handcoded [Hurdus and Hong(2008)]

In linking deliberation with execution two processes exist, task execution and sen-

sor management. Task execution transitions deliberation into action, abstract concepts

become motor commands. Alternatively, sensor management deals with abstracting low

level sensor data into concepts for deliberation. Sensor management tasks include iden-

tifying task completion and performing fault diagnosis[Murphy and Hershberger(1999),

Parker and Kannan(2006)]. The dynamic behavior hierarchy generation (DBHG) algo-

rithm focuses on task execution, and rather than make use of user supplied scripts, task

networks, or behavior hierarchies is designed to be build these and be modular for use

in conjunction with existing sensor management work.

The majority of hybrid architectures link planning to execution using task-level

control languages [Simmons and Apfelbaum(1998)]. These languages require that each

behavior hierarchy is expressed explicitly by the syntax of the language. The constructs

of the language limits the implementation, and requires the robot software designer to

adjust the behavior hierarchy (or task network) when a behavior is rewritten or when

the system goals change. We present an alternative representation that generically

describes each behavior for sequencing. This representation is used with the DBHG

algorithm that translates a high-level tasks into a behavior hierarchy (or task network)

that can complete the task. This aids in decoupling the layers by uniformly representing

the behaviors. The behavior representation and DBHG algorithm’s implementation

within the proposed architecture design enables a modular, robust system that requires

no code development in the task sequencer during a significant system modification.

The DBHG algorithm is demonstrated as the task sequencer component of a hy-

brid architecture on a Pioneer P2AT8 robot, and in a Player/Stage simulation. The

experiments show that the DBHG algorithm can use the behavior representation to

dynamically generate an arbitrated behavior hierarchy for accomplishing desired goals

without a priori knowledge of system capabilities and behavior functionalities. Us-

ing the behavior representation without knowledge of the underlying implementation

shows that the DBHG algorithm operates independent of behavior implementation.

Additionally, the behavior representation acts as the defined mechanism for linking

the planning of the behavior hierarchies to their execution.

2 Related Work

Hybrid robot control architectures have separate functional components (or layers) for

plans, coordination, and actions. These layers can be generalized into three composite
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layers based on increasing levels of abstraction and temporal complexity: a reactive

feedback control mechanism (Controller), a deliberative planner (Deliberator), and a

sequencing mechanism that connects the first two components (Sequencer) [Gat(1997)].

This design approach promotes systems that perform well in goal directed and dynamic

environments at the expense of system complexity. Additionally, implementations of the

architecture typically couple the connections between these layers tightly, so changes

within one layer require modifications in other layers.

All layered architecture creators describe the layers in detail [Bonasso et al(1997),

Connell(1992),Konolige et al(1997),Simmons et al(1997)] and have shown that a lay-

ered architecture accomplishes the merging of reactive execution with deliberative plan-

ning. Many of these architectures make use of sophisticated plan execution systems

that continuously interleave planning and execution [Infantes et al(2006)], referred to

as task-level control languages.

Task-level control languages link the Sequencer to the Controller. These languages

require that each behavior (e.g. task-net [Firby(1989)]) is expressed explicitly by the

syntax of the language. Although the expressed behaviors are limited to the con-

structs of the language, they demonstrate the benefit a behavior representation can

have toward automated behavior sequencing. The common plan execution languages

implemented in various hybrid architectures include Reactive Action Packages (RAPs)

[Firby(1989)], Procedural Reasoning System (PRS) [Ingrand et al(1996)], Reactive Plan

Language (RPL) [McDermott(1991)], Executive Support Language (ESL) [Gat(1997)],

Propice-Plan [Despouys and Ingrand(2000)], and Reactive Model-Based Programming

Language (RMPL) [Williams et al(2003)].

The RAP (Reactive Action Package) [Firby(1989)] representation groups together

all known ways to accomplish a task in various situations. Each RAP is a sequenced

collection of methods for accomplishing a particular task. The RAP selected for exe-

cution is the one that most effectively accomplishes the task for a given environment

at that time. The three major components of a RAP are: index, success clause, and

the methods that accomplish the task for different situations. The index is the task

that a particular RAP achieves. The success clause identifies the test used to indi-

cates when the task is completed, and the methods describe the behavior sequencing

to accomplish the task for different environments. A drawback of RAP-based systems

is that the programmer must know all of the system’s potential tasks and develop

task-net descriptions to accomplish these tasks for every possible situation the system

may encounter. This hard-coded approach limits the ability to apply these systems to

dynamic and diverse environments.

Reactive Plan Language (RPL) is descended from the RAP notation with a few

differences [McDermott(1991)]: RPL plans look like Lisp programs, explicit constructs

exist for high-level concepts (interrupts and monitors), and world state is not main-

tained by the interpreter. An RPL plan describes an environment driven behavior

governed by temporal changes (fluents). Fluents are conditional statements that detail

a condition that must be true for an action to be executed. These fluents are controlled

by state model variables or direct sensor input. RPL uses projection mode to anticipate

whether the current plan can achieve the desired goals. Dynamic environments make

this internal simulation difficult in that the computation time alone may require more

time than the changing environment allows. This approach is also hard-coded to the

environment, thereby limiting its more general applicability for dynamic and complex

environments.
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Executive Support Language (ESL) is a language for encoding execution knowl-

edge in embedded autonomous agents [Gat(1997)]. Unlike RAPs and RPL, ESL is not

intended for automated reasoning or formal analysis. Instead, ESL uses a cognizant

failure concept to handle errors and failures. ESL assumes failures are inevitable and

can recover from errors including infinite loops. The behaviors in ESL are identified by

the goals that they achieve and the conditions that make the behavior’s method appro-

priate. ESL supports multiple concurrent behavior execution by allowing behaviors, or

tasks, to wait for events. However, a detailed description of the behavior’s execution is

required, along with a priori knowledge of the working environment. These limit the

applicability of ESL for more sophisticated environments.

Similar to ESL, several architectures exist which include components (sensor man-

agers) that monitor sensors for failures. In the case of Sensor Fusion Effects-Exception

Handling (SFX-EH)[Murphy and Mali(1997),Murphy and Hershberger(1999)], it real-

locates a sensor, tries to reinitialize the sensor, or throws a behavior fault which is

caught by the task manager. The task manager includes a schema of the individ-

ual behavior to execute given the current sensor failure. SFX has been expanded to

function across multiple cooperative robots in DFRA[Long et al(2005)]. The genera-

tion and testing components of the sensor manager exists in DFRA, however, another

robot’s sensor may be used to complete the task. In Learning-based Fault diagno-

sis (LeaF)[Parker and Kannan(2006)], case-based reasoning on a pre-specified partial

causal model is used to learn cases for an extended SFX-EH. All of these architectures

focus on identifying a failure and the correct response, where the correction is encoded

as a script[Murphy and Mali(1997)], not on building a behavior hierarchy.

The Procedural Reasoning System (PRS) uses behavior libraries that map out

low-level behavior activations to represent and execute procedures, scripts, and plans

in dynamic environments [Ingrand et al(1996)]. PRS maintains a world model with

derived beliefs or user entered static beliefs [Ingrand et al(1992)]. The behaviors of the

robot system are described by the goals in PRS. Knowledge for accomplishing these

goals are stored in knowledge areas (KAs). KAs are declarative procedure specifications

that describe the conditions for which the KA is useful and steps for accomplishing the

goals of the KA. Each KA can be viewed as a task-tree that requires certain goals to

be true in order to activate the next step. The plans in the library are not combined

to create other plans and thus PRS does not promote behavior or plan reuse.

Despouys and Ingrand [Despouys and Ingrand(2000)] propose Propice-Plan which

couples planning with plan execution using an operational plan. Each operational

plan uses PRS to describe the behavior execution, and includes the goal and initial

conditions required for execution. The LAAS architecture uses the temporal planner

(IXTET ) with Propice as a procedural executive to close the loop between the levels of

the architecture [Lemai and Ingrand(2004)]. Propice-Plan does not interpret the plan

built but identifies, given the world state and the desired goal, which operational plan

to execute. The operational plans contain a procedural context describing the behavior

execution, thus limiting robustness and flexibility since the specifics of the behavior

execution must be known.

The Reactive Model-Based Programming Language (RMPL) [Williams et al(2003)]

is an object-oriented, constraint-based language that follows a model-based program-

ming approach. The constructs of RMPL provide behaviors with conditional branching,

preemption, iteration, and concurrent and sequential composition. These constructs

enable behaviors that range from simple, reactive behaviors to complex, multi-task

achieving behaviors. Therefore, RMPL can offer some of the goal-directed tasking and
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monitoring capabilities that RAPs and ESL offer. RMPL employs Titan, a dedicated

executive for controlling robot behavior. Titan uses a reactive control loop to monitor

the current state for failures and transition from the current state to the desired goals.

In RMPL, much of the low-level details, often coded within a behavior, are deduced

and analyzed within the deductive controller. This convention does not promote a re-

active sensor-to-action pair behavior implementation since the behavior is decomposed

further in the Controller. Furthermore, the decomposition of the behavior model may

limit a behavior’s reactivity since decomposition is performed every cycle.

The primary weakness in using task control languages is that they do not follow

modular software coding practices and rely heavily on language understanding and

syntax. The tasks and associated planning are programmed using these language con-

structs, which dictates behavior implementation. This dictation prevents application of

an abstract representation, thus restricting the implementation. This results in systems

which cannot change a behavior’s implementation without changing its description. An-

other weakness is their tight coupling and interleaving of the sequencing and control

layers’ functional components. Often, the plan execution languages perform the func-

tions of both the Sequencer and Controller without a clean division between the two

layers. Therefore, changing the intended environment or system capability requires an

almost complete rewrite of the sequencing layer. Thus, we present a representation and

DBHG algorithm which provides a departure from this tight coupling.

3 Sequencer Control Logic

To automate the link between the Sequencer and the Controller, we create a control

algorithm in the Sequencer that generates a behavior hierarchy. The control loop begins

by receiving, from the Deliberator, a goal-set (or objectives plan (OP)) that describes

the tasks and order in which they are to be met. The DBHG algorithm at the core of the

Sequencer searches through the library of behaviors and generates a behavior hierarchy.

The behavior hierarchy is the collection and organization of the behaviors and arbiters

that accomplishes the objectives set forth by the Deliberator. This section presents the

Sequencer design, the representation used for the behaviors, and the representations

used in the DBHG algorithm.

3.1 Behavior Representation

Behaviors accomplish a specific set of tasks or subtasks in a specific environmental

context. When the robot is in the context, the behavior responds with an action and

a positive vote. If the robot is not in the situation, the behavior responds with a null

action and a zero vote. The characteristics of a behavior are abstractly described,

enabling the use of a mechanism for searching and selecting appropriate behavior ac-

tivations and deactivations to accomplish desired objectives. This uniform handling of

abstract behavior descriptions improves the robustness of the Sequencer.

A simple behavior’s description contains a set of outputs triggered by a set of input

conditions. The input conditions dictate specific output conditions, though a behav-

ior may also affect other conditions. Behaviors control various settings, accomplish

different abstract goals, and suggest a confidence value (vote) for its action recommen-

dations. All of these characteristics play a role in choosing combinations of behaviors to
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accomplish high-level tasks. Each behavior representation reflects a single functionality

of the behavior and is represented as the tuple {I, P,D,G,C, v}, where I and P are

the initial and post conditions, D is the sensor data required, G is the set of high-level

abstract goals, C is the set of system controls (e.g., motor outputs) that the behavior

sets, and v is the behavior’s vote, generated when it delivers an action recommenda-

tion. An example behavior performing obstacle avoidance using a LiDAR is shown in

Table 1.

Table 1: Example behavior LaserAroundObstacle.

LaserAroundObstacle
Initial Conditions (I)
- Active not-carrying
- Passive threshold-min
Post Conditions (P )
- Add avoid-obstacle-target
- Delete
Required Data (D) Laser
Goals Achieved (G) AVOID OBSTACLE TARGET
Action Settings (C) Velocity, RotationVelocity
Vote (v) 0 (if nothing is close), 7 (if an obstacle is close)

3.1.1 Initial Conditions (I)

The initial conditions of a behavior represent the environment variables that, when

true, generate an action recommendation and vote from the behavior. Additionally, I

represents the conditions required for the behavior to produce the post condition (P ).

There are two types of initial conditions: active and passive. Active conditions are the

initial conditions that are actively pursued to activate the behavior. Passive conditions

cause the behavior to activate but are not actively pursued for task completion. For

example, the LaserAroundObstacle behavior, which does not vote to control movement

until it reads that there is an obstacle within its projected path (threshold-min), does

not lead to completion of a sub-task. However, the behavior itself is necessary whenever

the robot is moving to ensure it does not run into obstacles. Note that this representa-

tion of the initial conditions is an example and does not dictate the manner of detecting

and avoiding obstacles.

3.1.2 Post Conditions (P )

The post condition represents the set of environment effects that the behavior intends

to achieve. This intent is based on action recommendations for the behavior at the

given initial condition I. These post conditions may invalidate other goals, so a plan

may require multiple steps or multiple simultaneous behaviors to be accomplished.

3.1.3 Required Data (D)

Since a behavior is a tight coupling of sensor readings to motor commands, D repre-

sents the set of sensors (or data) required for the behavior to function properly. This
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data also includes computed data that is not directly from a sensor. For example, the

LaserAroundObstacle behavior requires only laser data, but a more advanced obstacle

avoidance behavior may use a virtual field histogram to avoid obstacles.

3.1.4 Abstract Goals (G)

The behaviors in a system exist to accomplish a specific task. For example, the Laser-

AroundObstacle behavior in Table 1 is used to complete the AVOID OBSTACLE TAR-

GET GOAL task. The representation of the abstract goal is in the same language used

by the deliberator to generate the OP. Behaviors may meet multiple goals, such as

HAS ITEM, GRIPPER UP, and GRIPPER CLOSED. Since there are circumstances

where a gripper should be up independent of having an item, the DBHG algorithm

satisfies the task in the OP using the subset of the abstract goals as needed.

3.1.5 Control Settings (C)

Behaviors are written to affect settings for specialized controls. Most commonly, these

are motor controls. Dependent upon which controls are set, the control loop determines

the most appropriate arbiter for use with a set of behaviors. The controls that the

behavior affects are denoted by the set C. Table 1 shows the sets of control settings

(velocity and rotational velocity) for the LaserAroundObstacle behavior.

3.1.6 Vote (v)

The value v represents the vote for that behavior when in a state in which it acts. This

value is a user-determined value that relays the strength of the action recommendation.

A behavior may vote 0 when the robot is not in a state where the behavior would be

useful and some other value when the state is different. This situational variability

on the vote is dependent upon the behavior itself and its own evaluation of the state.

The issued vote is used by the UBF [Woolley and Peterson(2009)] determine the action

output, which is also dependent upon the arbitration technique applied.

3.2 Architecture Design

The Sequencer selects the behaviors the controller uses to accomplish long-term ob-

jectives. The Sequencer is designed such that after initial implementation, it requires

minimal software maintenance and modifications for system changes. This is accom-

plished using the behavior representation and DBHG algorithm. The Sequencer uses

the behavior representation as an abstract interface for sequencing the behaviors with-

out knowledge of each behavior’s concrete implementation. The transition from the

Sequencer to the Controller is the passing of a composite behavior module that repre-

sents an arbitrated hierarchy of behaviors that, when executed, accomplishes high-level

objectives.

The Sequencer contains a number of components that perform specialized tasks.

Figure 1 shows the Sequencer’s functional decomposition. These components are: Be-

havior Library, Resource Manager, Behavior Planner, and Behavior Executive. The

interaction of these components is shown in the timing diagram (Figure 2).
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Fig. 1: Sequencer Component Breakout. The Behavior library contains all behaviors

and the resource manager provides a subset of usable behaviors. The planner uses the

state and this subset to generate behavior hierarchies which satisfy the objectives plan.

The Behavior Library maintains the implementations and representations of the

behaviors contained within the system. The library initializes the behaviors and sup-

plies the set of available behavior representations to the Sequencer. This allows the

behavior planner to evaluate a behavior in the context of the behavior’s required data,

abstract goals, and pre and post conditions, regardless of the behavior’s specific imple-

mentation. Only the Behavior Library requires knowledge of the addition or removal

of behaviors, thus making the implementation transparent to the other components.

This minimizes change throughout the system when adapting the robot to a new en-

vironment. The behaviors are defined in an abstract representation to facilitate this

transparency (Section 3.1).

The Resource Manager monitors system resources (hardware and data) and opti-

mizes based on planned objectives and power management in relation to current tasks.

The Resource Manager also answers queries about the prospects for a behavior’s ac-

tivation based on resource availability. This allows the system to dynamically respond

to low battery life, failure of sensors, and addition of new sensors. This availability

provides a trimming of the set of behavior candidates used for task execution, thus

reducing the plan space.

The Behavior Planner generates a set of behaviors that satisfy the OP. It uses

the behavior representation to generate plans that are composed of a set of behav-

iors and the ordering constraints necessary to accomplish the OP. This functionality

is currently implemented using a simplified version of RePOP (Reviving Partial Or-

der Planning) [Nguyen and Kambhampati(2001)], a variant of Partial-Order-Planning

(POP). However, due to the modular design of this framework, the BP may use any

planning technique modified to generate a set of behaviors and a set of ordering con-

straints. Since the Behavior Executive generates a hierarchy of behaviors based on the

planner’s solution, a partial plan is sufficient for describing behavior interactions.

The Behavior Executive receives the OP from the Deliberator, then enters a hier-

archy generation loop for translating the OP to an arbitrated hierarchy of behaviors

that accomplish the objectives set forth by the Deliberator. The Behavior Executive
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Fig. 2: Timing diagram for translation of an objective plan (OP) to the arbitrated

hierarchy of behaviors.

requests a set of available system behavior representations from the Behavior Library.

It then sends the available behaviors to the Resource Manager for analysis. The Re-

source Manager responds with the subset of behaviors that require only those resources

(or data) which the system can currently supply. This subset of behaviors is sent to the

Behavior Planner, which returns a partial order plan containing the subset of behav-

iors and required ordering constraints. The Behavior Executive creates an arbitrated

hierarchy of behaviors, which for each OP is sent to the Controller, Behavior Library,

and Resource Manager for execution. The Behavior Library activates only the behav-

iors of the hierarchy and deactivates the remaining behaviors. The Resource Manager

manages the resources that the current hierarchy requires.

3.3 Dynamic Behavior Hierarchy Generation

The DBHG algorithm uses the behavior representation with the flexibility of the Uni-

fied Behavior Framework (UBF) controller [Woolley and Peterson(2009)]. The hierar-

chy generation uses the UBF’s ability to support multiple arbitration processes, an

issue identified in [Scheutz and Andronache(2004)] that has prevented this type of sys-

tem in the past. It receives an objectives plan from the Deliberator and generates a

sequence of arbitrated behavior hierarchies that accomplish the desired goals. By con-

structing the algorithm around the behavior representation, it creates a robust system

that dynamically sequences behaviors based on goal requirements, resource availability,

and behavior descriptions. The hierarchy generation algorithm performs the following

control loop:

1. Receive objectives plan (OP) from Deliberator

2. Identify behaviors that require only data that the robot can provide

3. Generate a solution plan to the partial plan
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4. Generate and validate an arbitration that accomplishes objectives and satisfies the

solution plan

5. Generate arbitrated hierarchy of behaviors and send to controller

6. Monitor for progress, hardware changes, and new OPs

The DBHG algorithm receives an objectives plan providing the sequence and pri-

ority of task completion from the Deliberator. Passive tasks, like obstacle avoidance,

are included in this set. Each task in the plan has an assigned sequence number and

activation priority. The sequence number dictates the order in which the tasks must be

completed. If two goals have the same sequence number, they are accomplished before

the next sequence but in no particular order. However, when behaviors compete for

resources, the behavior with the higher activation priority takes precedence.

The DBHG algorithm begins by placing the behaviors B that require only available

data D into a library of viable behaviors for each sequence step of the OP. This process

enables the use of a Resource Manager that conserves energy by deactivating sensors

during critical times or due to failure.

3.3.1 Solution Generation

Since the initial conditions I and the post conditions P do not represent the atomic

actions that Partial-Order-Planning (POP) expects [Russell and Norvig(2003)], a mod-

ified RePOP planner is used to incorporate the complexity of the concurrent taskings

that each behavior may encounter.

The planner uses the initial conditions to determine the conditions that must be

met for behavior activation. However, if the initial condition is a passive behavior, the

planner ignores the conditions and assumes that the post conditions are met when

necessary. This reduces the search space but also introduces new challenges to the

planner since the initial conditions are not linked to the outputs of a previous behavior,

but previous outputs could dictate the passive activation. This scenario is not handled

until arbiter selection and validation (step 4).

The difference between this planning approach and the POP approach is that POP

solves for a plan from an initial state to a specific goal condition. Here, the resultant

plan is a set of actions that have priorities and sequence numbers so that hierarchical

reactive behaviors can accomplish them. Furthermore, the response here is not scripted,

so complex, pre-generated responses to sensor failures need not be present. This enables

the incorporation of new sensors with little overhead.

3.3.2 Arbitration Selection and Validation

Appropriate selection of an arbiter ensures proper fusion, priority activation, and or-

dering of behavior action recommendations. The arbitration selection is based on the

controls the behaviors affect (C) and how the behaviors vote for each branch and what

that branch affects. For example, a garbage collection robot has a ScanForTrash behav-

ior which controls only the camera and a WallFollow behavior which controls only the

velocities. Since these two behaviors control different motors, they can operate concur-

rently. A Utility Fusion arbiter [Arkin(1998)] behaviors both control the forward and

rotational velocities and compete for motor usage. A Highest Activation arbiter is best

for this combination.
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Currently, arbitration selection is chosen by a rule based method that chooses

between a Highest Activation arbiter and a Utility Fusion arbiter [Arkin(1998)]. The

decision between which arbiter to use is based on the controls the behaviors effect

and the sequence of the OP. Since the sequence of behaviors is dictated by the OP,

the behaviors that meet each sequence are selected by highest activation arbiters. If

a behavior competes with another behavior for affective control, a highest activation

arbiter is used. However, if the behaviors do not compete for affective control, a utility

fusion arbiter is selected. If the selected hierarchy does not satisfy the initial OP and

the generated solution, then the planning fails and exits the control loop.

The validation process of the arbitrated hierarchy of behaviors ensures the hierar-

chy satisfies the initial OP and the generated solution. Since a hierarchy is described

as a composite behavior, it generates a behavior representation based on its output to

every possible initial condition combination. By cycling through the possible environ-

ment conditions after each behavior’s activation, a sequential ordering is generated to

compare to the initial plan and the generated solution. If the sequential plan satisfies

the initial OP and the generated solution, then the activation priorities of the OP are

valid.

3.3.3 Progress Monitoring

The Sequencer also monitors the state for anticipated changes and dispatches the

appropriate hierarchies at appropriate times. To accomplish this, the Sequencer has

a state monitoring convention, which waits for the post conditions of the executing

hierarchy to indicate goal completion. When monitoring for the post conditions of a

hierarchy, the Sequencer identifies whether all of the adders are present and all of the

deleters are absent. When these conditions are met, the Sequencer dispatches a new

hierarchy to achieve the next task or, for the final task, indicates achievement of the

entire plan.

The monitoring process also includes monitoring for conditions that potentially

affect the currently planned hierarchies. An example of this is when the Resource

Manager declares that a hardware change has occurred. Since the behaviors are initially

selected based on the sensor data (or hardware) that it expects, the current (and

subsequent) plans may contain behaviors that use hardware that is no longer available.

This situation results in the replanning of the currently running hierarchy and any

hierarchies that have been scheduled for later.

4 Results

The Sequencer presented uses a behavior representation as an abstract interface and

a modified planning algorithm to build behavior and arbiter hierarchies to meet plan

goals. The experiments demonstrate the robust architectural design by accomplishing

high-level taskings using the same software implementation of the architecture on sys-

tems with different capabilities and active behaviors. They also demonstrate dynamic

sequencing that occurs when the system and deliberator are concerned with power

management as well as completing the tasks.
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4.1 Physical Robot Experiment

The extensibility of the DBHG algorithm is demonstrated on an ActivMedia Pioneer

2AT robot (named Gollum). Gollum initially has 24 behaviors, each of which fulfills

certain goals, applies action settings, and contains pre and post conditions. Among

these behaviors are GoToXY, AroundObstacle, and LaserAroundObstacle. The specifics

of these behaviors are shown in Table 2, with the exception of LaserAroundObstacle,

which is shown in the example behavior description previously described in Table 1.

Table 2: Two initial behaviors.

GotoXY
Initial Conditions (I) N/A
Post Conditions (P )
- Add desired-x-location,desired-y-location,all-stop
- Delete
Required Data (D) Position, Odometry
Goals Achieved (G) XY LOCATION
Action Settings (C) Velocity, RotationVelocity
Vote (v) 3 (constant)

AroundObstacle
Initial Conditions (I)
- Active not-carrying
- Passive threshold-min
Post Conditions (P )
- Add avoid-obstacle-target
- Delete
Required Data (D) Sonar
Goals Achieved (G) AVOID OBSTACLE TARGET
Action Settings (C) Velocity, RotationVelocity
Vote (v) 0 (if nothing is close), 4 (if an obstacle is close)

These behaviors are selected for a plan if the OP has the goals XY LOCATION and

AVOID OBSTACLE TARGET. A utility fusion arbiter is selected for use by the UBF,

so for behaviors that have the same action settings, it is a winner-take-all behavior ex-

ecution. Thus, if both the Laser and the Sonar are available, the LaserAroundObstacle

behavior dictates the motor output when an obstacle is close. Otherwise, the GoToXY

behavior dictates the motor output. If the resource manager were to indicate a failure

or unavailability of the Laser, the AroundObstacle would handle the obstacle avoid-

ance aspects of the task execution. The GoToXY behavior operates by first rotating

the robot to the appropriate angle, then moving the robot to the indicated position.

The obstacle avoidance behavior activates when an obstacle is close enough for the be-

havior to vote higher than 3. It then takes over, moves to an area where the obstacles

are sufficiently far away as to be uninteresting, then votes 0, allowing the GoToXY

behavior to take over once more. In areas where there are large or many obstacles, the

robot may encounter a “see-saw” effect, switching from the GoToXY behavior to the

LaserAroundObstacle behavior and back multiple times.

To address this effect, a Vector Field Histogram-based behavior was developed

[Borenstein and Koren(1991)]. This behavior is designed to proceed to the target loca-

tion via the widest available area within a certain span of the laser. Instead of swapping
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Fig. 3: The path Gollum traversed with and without the VFH behavior.

between two behaviors, it often proceeds in a more straightforward manner to the tar-

get position. The specification of the behavior is shown in Table 3.

Table 3: VFH Behavior.

VFH
Initial Conditions (I) N/A
Post Conditions (P )
- Add desired-x-location,desired-y-location,all-stop
- Delete
Required Data (D) Position, Laser, Odometry
Goals Achieved (G) XY LOCATION, AVOID OBSTACLES TARGET
Action Settings (C) Velocity, RotationVelocity
Vote (v) 6 (constant)

The VFH behavior with the parameters as shown in Table 3 is added to the behavior

library, and no further changes are made. The activity of the robot both with and

without the VFH behavior are tracked on a task to traverse a hallway. The goal is to

arrive at a location of (5, 4) from the initial position of (0, 0) in a hallway.

Figure 3 shows the different paths Gollum followed. Before the addition of the VFH

behavior, Gollum followed the left wall and attempted multiple times to turn towards

the wall and move through it. After crossing the threshold at which LaserAroundOb-

stacle votes higher, it turned away from the wall and moved a short distance. The

numerous attempts to turn back into the wall caused odometry drift, thus causing

Gollum’s final position to be off by 0.2 meters. However, the VFH behavior allowed

Gollum to travel roughly down the center of the hall, turning only once and traveling

to the target position. The final position is off by less than 0.05 meters. The addition of

the VFH behavior to the robot enabled the robot to enter the target area with smaller



14

error and in a shorter time (12 seconds vs. 28 seconds). The advantage of the DBHG

framework in this context is that, besides the programming of the behavior itself, the

time and effort it requires to integrate a new behavior into the robot’s control archi-

tecture is minimal. The behavior is added to the behavior library, and the appropriate

hardware requirements and goals are incorporated into the behavior. The system re-

quires no additional overhead to incorporate the VFH (or some other) behavior into the

architecture. The rapid deployment of behaviors allows the robot’s overall architecture

to be more compartmentalized, thus requiring minimal adjustment, reprogramming, or

tuning of other architecture components.

4.2 Power Simulation Results

To demonstrate the DBHG algorithm building different behavior hierarchies for the

same task under different constraints, we use the Player/Stage simulation platform

[Gerkey et al(2003)] and have the robot locate and deliver targets to a specified lo-

cation under different sensor restrictions and power management strategies. In this

experiment, there is one robot, and it must repeatedly find the targets and deliver

them to the trash can.

The power management strategies focus on allowing the use of LiDAR, sonar or

both. The strategies include: a) no power management, all sensors are available, b)

strict, only sonar is available, c) lenient, both LiDAR and sonar are available until a

critical power threshold (15 percent) is passed at which point only sonar is available,

and d) predictive, both sensors are available and power management is handled by

the deliberator. The predictive method uses the Sequential Planning Using Decision

Diagrams (SPUDD) [Hoey et al(1999)] Partially Observable Markov Decision Problem

(POMDP) planning algorithm as the deliberator.

In the environment, an assumption is made that the first target is in an environment

which can be traversed using sonar. The second target however is in a more complex

environment in which the robot has a high probability for getting stuck if only using

sonar (0.9 probability of success using LiDAR, 0.3 using sonar). The predictive method

outputs a set of OPs that suggest using the sonar for the first target and the LiDAR

for the second. Table 4 shows the modeled power requirements for each sensor. The

costs in SPUDD are set to 4.0 for the sonar, and 1.0 for the LiDAR.

Table 4: The amount of power consumed for each device.

Device Power (watts) Discharge (units/ms) Error (%)
Laser 20 0.1667 ±20
Blobfinder 12 0.1000 ±20
Gripper 10 0.0833 ±20
Sonar 0.7 0.0058 ±10
Bumpers 0.25 0.0021 ±10
Motors 0.19-13.29 0.0016-0.1108 -
Controller/PC 12.6-19.6 0.1050-0.1633 -

The behaviors used in this experiment include GotoXY, GotoXYT, AroundObsta-

cle, Release, Grab, AllStop, WallFollow, ApproachTarget and LocateTarget behaviors.

There are two WallFollow, ApproachTarget, and two AroundObstacle behaviors, one
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using the LiDAR and the other the sonar. The LiDAR requires more power but is more

accurate, enabling the robot to traverse more difficult environments.

To accomplish the high level tasking, there are four OPs: find the target, pick it

up, bring it to the designated area, and drop the target off. These OPs, including

the goals, sequence numbers, activation priority (or rank), and goal parameters, are

shown in Table 5. The table represents one cycle of finding one target and disposing of

it. When these OPs are repeatedly sent to the Behavior Executive, the result is that

every target is placed in the designated area.

Table 5: Objectives Plans for collecting targets and delivering to the destination area.

OP Goal Seq Rank Params
Find/Get EXPLORE 1 1 N/A

VISUAL TRACK OBJECT 1 1 Yellow
GRAB OBJECT 2 1 N/A

Deliver AVOID OBSTACLE TARGET 1 2 N/A
x = 5.5;

GOTO XYT 1 1 y = -5.5;
θ = 0.0

Drop RELEASE OBJECT 1 1 N/A
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Fig. 4: The results from four trials of a test sequence of goals (showing only the 15%

thresholds).

When the power management scheme allows for the use of the LiDAR, the behavior

hierarchy generated includes the WallFollow and AroundObstacle make use of it. When

the power management scheme only allows for sonar use DBGT builds a hierarchy

with the sonar versions of WallFollow and AroundObstacle. The resultant behavior

hierarchies for each OP and sensor availability are shown in Table 6. Although the

use of a sensor is dictated by the deliberation layer, a similar result would result if

the DBHG were included in SFX-EH [Murphy and Hershberger(1999)] in place of the

scripted responses. The sensor manager would remove the sensor and trigger the DBHG
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to rebuild using an alternative sensor. If no behavior could be generated the deliberator

would then be called to generate a new plan.

Table 6 shows the generated behavior hierarchies after a resource change that ef-

fects the previous solutions to the OP. As can be seen, the DBHG generates behavior

hierarchies which use the behaviors that are available. For the Find/Get (a) and Deliver

(b) OPs hierarchy generation fails because there are no behaviors that are capable of

accomplishing the goal of the OP due to resource unavailability. When hierarchy gen-

eration fails, the dispatch item for that OP is marked as a plan failure and awaits for

a new replanning trigger to re-evaluate the OP. If the Behavior Executive reaches this

item in the dispatch queue, then the Behavior Executive dispatches the default behav-

ior (AllStop) and waits until replanning occurs, or the Sequencer resets the dispatch

queue and sends in new OPs.

Sensor Both Laser Neither Sonar

Arbiter Utility Fusion N/A N/A Utility Fusion

Behaviors WallFollow Failed Failed WallFollow
LocateTarget LocateTarget
Grab Grab
SonarApproachTarget SonarApproachTarget
Release Release
LaserApproachTarget

(a) Find/Get

Sensor Both Laser Neither Sonar

Arbiter Highest Activation Highest Activation N/A Highest Activation

Behaviors GoToXY GoToXY Failed GoToXY
SonarAroundObstacle LaserAroundObstacle SonarAroundObstacle
LaserAroundObstacle

(b) Deliver

Sensor Both Laser Neither Sonar

Arbiter Highest Activation Highest Activation Highest Activation Highest Activation

Behaviors Release Release Release Release

(c) Drop

Table 6: Resultant behavior hierarchies for resource availability reconfiguration for each

OP.

Except for the strict power management, which gets stuck trying to get to the

second target, the simulated robots completed the set of goals within approximately

150 seconds. After 150 seconds, the robots have found and delivered both targets

and begin wandering (looking for targets that are not found) which creates a power

consumption curve that is very linear and not noteworthy. Figure 4 shows that using

predictive power management yields, on average, a 17% increase in remaining battery

charge after task completion over lenient power management, and an average increase

of 46% over no power management. This is achieved by using the predictive power plan

that the MDP power planner produces. In this domain, maximum utility is found by

using the sonar in the first collection and the laser in the second.

5 Conclusions

Layered, hybrid robot architectures combine deliberative planning with reactive behav-

ior execution. This article presents the use of an abstract behavior representation with

the dynamic behavior hierarchy generation algorithm to dynamically sequence system
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behaviors for accomplishing high-level tasks in a robust and modular implementation.

The abstract behavior representation provides an interface for the DBHG algorithm

within the Sequencer to dynamically build behavior hierarchies without requiring the

user to handcode a behavior script or be concerned with a behavior’s low-level imple-

mentation. This creates the defining entity that allows the Sequencer and Controller

to seamlessly pass the planned behavior hierarchy between layers, but still enables the

robustness and modularity of the components. The experiments show the behavior

representation and DBHG algorithm successfully implemented within a hybrid archi-

tecture, and that the system can build arbitrary hierarchies based on variations in the

tasks needing to be executed and sensor availability.

A future extension that will increase the system capabilities with minimal changes

to the current modular entities include the creation of an abstract arbiter representa-

tion, rather than the set of rules currently used. The goal would be a representation

that can be used like the behavior representation to describe different arbiters with a

vote-weighting reasoning capability.
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