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Abstract.

In security-related areas there is concern over novel ”zero-day” attacks that pene-
trate system defenses and wreak havoc. The best methods for countering these threats
are recognizing ”non-self’ as in an Artificial Immune System or recognizing ”self”
through clustering. For either case, the concern remains that something that appears
similar to self could be missed. Given this situation one could incorrectly assume that
a preference for a tighter fit to self over generalizability is important for false positive
reduction in this type of learning problem. This article confirms that in anomaly de-
tection as in other forms of classification that a tight fit, although important, does not
supersede model generality. This is shown using three systems each with a different
geometric bias in the decision space. The first two use spherical and ellipsoid clusters
with a k-means algorithm modified to work on the one-class/blind classification prob-
lem. The third is based on wrapping the self points with a multidimensional convex
hull (polytope) algorithm capable of learning disjunctive concepts via a thresholding
constant. All three of these algorithms are tested using the Voting dataset from the
UCI Machine Learning Repository, the MIT Lincoln Labs intrusion detection dataset,
and the lossy-compressed steganalysis domain.
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1. Introduction

Many popular data classification methods are not blind, indicating that for de-
cisions with two or more classifications the training set must consist of instances
of each classification. If they are tested against an unfamiliar class instance, the
learned hypothesis is unable to reliably distinguish the foreign instance from the
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classes of the training set. A blind classification method, often handled through
clustering, recognizes that a foreign instance is not a member of any of its train-
ing classes and identifies it as an anomaly given a learned model from a single
class’ data. This kind of anomaly detection is useful when there is incomplete
domain knowledge available for training, or when we hope to block anomalies
which have never been seen previously.

In order to detect attacks from an attacker trying to blend in with nor-
mal network traffic, we compare the benefits of the casting of the search prob-
lem as a generalization of the normal data and whether generalization reduces
anomaly detection accuracy and if there should be a preference toward fitting
the normal ”self” data more closely. Where generalization, as defined by Mitchell
(Mitchell, 1982), is the process that takes a large number of samples and creates
a hypothesis (inductive bias) that retains the important features of each class.
Figure 1 shows the results of applying the modified k-means sphere, ellipse, and
the convex polytope algorithms to each class separately for a simple two class
problem. As can be seen from this example, the generalizability of the model
decreases as the model improves its tightness to the data points, apparent by
the amount of attribute space each shape covers. At the same time as the model
fits self tighter, there is less overlap with the other classes and fewer false pos-
itives. Given a domain in which the attackers attempt to craft an attack that
appears as close to normal (self) as possible, a blind learning approach which fits
the model closely could be seen as important. Although a tight fit is important
for anomaly detection the reduction in generality results in an adverse effect in
which the percentage of false alarms increase.

The empirical evaluation of generalization has been investigated for function
approximation (Wah, 1999), explanation-based learning (Cohen, 1988; Mitchell,
et al., 1986), and classification (Barron, 1991; Baum and Haussler, 1988), but
has previously not been explored for anomaly detection. This paper presents
an empirical comparison of three geometric constructs, spherical, elliptical, and
hyper-convex polytope representations, each with decreasing bias and general-
izability for anomaly detection on several problems demonstrating that some
generality is required for best performance. Results show that the elliptical bias
performs best due to its capability of accurately estimating a convex polytope
(Melnik, 2002) while retaining the best performance due to its simpler bias.
These results are important because only by learning the best model of normal
are we going to be able to detect and prevent previously unseen security attacks.

2. Related Work

The application of anomaly detection as a classification technique has become
widespread as the number of application areas increases. Anomaly detection
has been most valuable in security domains such as Intrusion Detection Sys-
tems (IDS) (Dasgupta and Gonzales, 2002; Denning, 1987; Eskin, 2000; Es-
kin, 2002; Lazarevic, et al., 2003; Fan, et al., 2004; Peterson, et al., 2005), de-
tecting spam e-mail (Gupta and Sekar, 2003; Delany and Cunningham, 2006),
virus detection in the unix process list (Inoue and Forrest, 2002; Lane and Brod-
ley, 2003), and for detecting novel steganography in jpeg images (McBride, et
al., 2005). Beyond anomaly detection’s application in security domains, it has
also been applied to the domains of hyperspectral imagery (Chang and Chi-
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ang, 2002), and prognostics and health management of embedded hardware sys-
tems (Brotherton and Johnson, 2001).

For each application domain, the number of learning algorithms used is just
as extensive. Two of the most popular algorithms are the single class support
vector machine in which a kernel function is used to separate the normal samples
from the spatial origin (Farid and Lyu, 2003; Lazarevic, et al., 2003; Eskin, 2002),
and k-means (Eskin, 2002; Peterson, et al., 2005; McBride and Peterson, 2004;
McBride, et al., 2005), or mixture models (Eskin, 2002), which make use of a
geometric representation or distribution to classify normal around the model
means. Other learning algorithms applied to an anomaly detection problem have
consisted of self organizing maps (Brotherton and Johnson, 2001), k-Nearest
Neighbor (Lazarevic, et al., 2003), Artificial Immune Systems (Dasgupta and
Gonzales, 2002; Inoue and Forrest, 2002), and Hidden Markov Models (Cho and
Park, 2003; Lane and Brodley, 2003).

Common to all of the different domains and application areas are some fun-
damental research issues. Similar to other machine learning problems, one of the
fundamental research issues concerns the data set. The data set must consists of
a representative sampling from the decision, and each item must be represented
by an applicable set of features in order to learn a good model for classification
(Duda, et al., 2001).

In anomaly detection, collecting a representative sampling is exacerbated
by two very difficult problems that must be addressed. The first of these is the
often used assumption that for training, the normal data is clean and contains no
anomalies (McBride, et al., 2005; Farid and Lyu, 2003; Dasgupta and Gonzales,
2002). This is an assumption that for real world domains, such as intrusion
detection systems may not be achievable, and instead requires that the anomaly
detection system attempt to statistically separate the anomalies from noise in
the normal network traffic (Eskin, 2000; Eskin, 2002).

The second sampling issue is that there is a large skew between the amount
of normal and abnormal data samples in most data sets. For example, in the
week 2 Lincoln Labs IDS data set, only 1.06% of the samples are anomalous
(Kubler, 2006). The result of this imbalance is that often algorithms will either
not identify the anomalies because the overall accuracy of classifying all data
as clean is often higher than systems which have even a small percentage of
false positives mixed with missed detections. Because of this, in addition to
trying to increase anomaly detection algorithm accuracy, much of the anomaly
detection research focuses on finding a balance between reducing the number of
false positives while increasing the number of detections(Dasgupta and Gonzales,
2002; Denning, 1987; Eskin, 2002; Lazarevic, et al., 2003; Peterson, et al., 2005).
Another effect of the data skew concerns balancing the costs associated with
incorrect classifications (Drummond and Holte, 2005). For example, does falsely
labelling a normal object as an anomaly have the same operational costs as
missing a true anomaly.

The second data set issue is that of determining a representative set of fea-
tures. Many anomaly detection systems are faced with an abundance of possible
attributes and make use of statistical features in order to reduce the scale of the
data that must be dealt with (Chang and Chiang, 2002; Dasgupta and Gonza-
les, 2002; Farid and Lyu, 2003; Jackson, 2003; Peterson, et al., 2005). As a result
of the inability of the algorithms to scale to ever larger datasets, or draw infer-
ences from the data on their own, often the feature development becomes more
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Fig. 1. A Simple 2-Class Problem with Sphere, Ellipse and Convex Polytope.

prominent that the learning algorithm, as techniques to detect specific anomalies
are created (Farid and Lyu, 2003; Fridrich, et al., 2001; Avcibas, et al., 2002).
Another anomaly detection research issue is that of handling dynamic envi-
ronments, whether it be represented as concept drift (Widmer and Kubat, 1996),
or lifelong learning (Thrun, 1995). For example, if an anomaly detection algo-
rithm were to function as a biometric security system based on a users typing
rhythm. And the user were to come back a day later having injured their hand
and disrupted their own typing rhythm is this an anomaly or is this just a change
in the rhythm that the anomaly detection system must track. Because the sys-
tem must separate the noise from the actual concept drift, this is most often
handled through some form of feedback (Delany and Cunningham, 2006).

3. The Blind Classifiers

This section discusses the geometric biases used in each of the blind classifiers.
The three geometric biases are convex polytopes, hyper-spheres, and hyper-
ellipsoids.

3.1. Convex Polytope

Central to the first geometric classifier algorithm is the concept of a polytope.
A d-polytope is a closed geometric construct bounded by the intersection of a
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Fig. 2. Convex Hulls: (a) 2-D, and (b) 3-D (Lambert, 1998)

finite set of hyperplanes, or halfspaces, in d dimensions (Coxeter, 1973). As the
number of dimensions rises, the polytope structure becomes increasingly complex
and unintuitive.

A polytope is convex if a line segment between any two points on its boundary
lies either within the polytope or on its boundary. A convex hull of a set of points
S in d dimensions is the smallest convex d-polytope that encloses S (O’Rourke,
1998). Each vertex of this enclosing polytope is a point in S (Figure 2). The
ghull program (Barber and Huhdanpaa, 2002), version 2002.1, is used with this
convex polytope classifier which has a worst time complexity of O( n4/? ) for n
input points in d-space (Barber, et al., 1997).

Using a convex polytope for clustering requires mapping the training in-
stances for a particular class C to a set T of d-vectors. A test point p is declared
to be a member of class C'iff it is bounded by the polytope defined by computing
the convex hull of T'. This is determinable by computing the convex hull of T
unioned with p if the new polytope is the same as the previous then p matches
the model and is part of class C.

Additionally, the possibility that a class attribute space is disjunctive, rather
than contiguous exists. To compensate for disjunctions and lessen the impact
of statistical outliers, a tolerance feature controlled by parameter 0 < § < 1
is added. The samples are partitioned into unconnected sets where the dis-
tance squared between the two closest samples of each set are greater than
B2d(MAX;—MIN;)? where MAX and MIN are the largest and smallest values
for each attribute dimension (i).

One mechanism for guiding the selection of 3 determines the finite number
of 3 values which produce unique partitionings of the data. This method works
by sorting the upper-triangular distance-squared matrix for all instances of the
training class. Each of these squared distances are then mapped to distinct (2
values. This set of values, B, then represents the significant 3 values as only they
may yield distinct polytopes (McBride, et al., 2005).

The convex polytope provides the least generalization and the tightest fit
around training data of the three algorithms. However, its exponential-in-d time
complexity limits its feasibility to classification problems containing a relatively
small number of attributes.

3.2. k-means with Hyper-Spheres

The k-means algorithm assigns points to clusters by attempting to minimize the
sum of squared within group errors (MacQueen, 1967). The algorithm performs
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iterations re-assigning points to different clusters and adjusting the centroids
until it can no longer reduce the sum of squared within group errors by fur-
ther shuffling. Selection of the number of means k can be done via the Bayesian
Information Criterion (x-means) (Pelleg and Moore, 2000), Gaussian means (G-
means) (Hamerly and Elkan, 2003), or experimentation, as is done here in the
interest of achieving the best results. The time complexity of the k-means algo-
rithm is O(knr) for k clusters, n points, and r iterations (Wong, et al., 2000).

The cluster centroids produced by the k-means algorithm are the center points
of the k hyper-spheres in class model S. The radius of each hyper-sphere is given
by the distance between the corresponding centroid and the most distant point
in its cluster. Point p is bounded by a hyper-sphere with center point ¢ and
radius r iff dist(p,c) < r. A point is declared a member of class if it is enclosed
by any of the k hyper-spheres in S.

Testing a point for inclusion in the k hyper-spheres of S takes O(kd) time.
The obvious advantage the hyper-sphere model has over a convex polytope is
that its time complexity is linear, not exponential, in d. However, because of the
sphere’s greater bias, the algorithm does not fit the normal samples as closely
and has a greater chance for classifying false positives. Thus a third classifier is
presented that attempts to strike a balance between these two paradigms and
leverage their relative strengths (i.e., the tighter fit of a convex polytope and the
computational feasibility of a hyper-sphere).

3.3. k-means with Hyper-Ellipsoids

A hyper-ellipsoid, as observed by Nguyen, et al. (2003), can be used to ap-
proximate a convex polytope. Hyper-ellipsoids have been used to classify high-
dimensional data in previous work. Specifically, Melnik (2002) makes use of a
special kind of ellipsoid, the Minimum Volume Ellipsoid (MVE), in which the
size of the ellipsoid, s, is equal to the dimensionality of the space and the shape
of the ellipsoid,X 1, is a scatter matrix of points. This research differs from the
MVE ellipsoid definition in that X ~! is instead an inverse covariance matrix of
points, which relates to the scatter matrix via a calculation of the mean and
covariances and for the number of samples in the datasets requires far less space.
Additionally, our methodology differs in that instead of the ellipsoid represent-
ing the entire decision space, mutliple ellipses represent the decision space and
better represent the training sample topology.

Like the hyper-sphere model, the hyper-ellipsoid model first separates the
training set T of class C' into k clusters using the k-means algorithm. Each
cluster ellipsoid is defined by (z — u)TX~1(x — u) = s where s specifies the
ellipsoid size, u specifies the center point as a vector in the attribute space, %
the ellipse shape, and x is a d-vector representing a point on the border (locus)
of the ellipsoid. At this stage, ¥~! and u are computed, but s is still an unknown
quantity. The size of each cluster ellipsoid must be chosen carefully, as it affects
the fit and generality of the resulting class model.

Define L as the sorted-ascending list of s values that results from computing
the minimum s for each cluster point as z, where s = L defines the smallest
ellipsoid size that encloses all cluster points. If the cluster contains extreme
points (statistical outliers), then using L as the s value results in an ellipsoid
that encloses too much of the attribute space and that has a high probability of
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declaring false-positive matches. Therefore, a tolerance parameter, 0 < 6 < 1, is
applied to allow the user to tweak the size of the hyper-ellipsoid.

A preliminary cluster ellipsoid size is s = Lgz|. Thus, if 6 = 0.9 then the
upper-tenth percentile of cluster points (the 10% that create the largest s values)
are not enclosed by the hyper-ellipsoid, which prevents the most extreme points
from affecting the size of the hyper-ellipsoid model. To purge their influence from
the ellipsoid shape and location parameters as well, ¥~! and p must be recom-
puted for the cluster subset containing only the bottom J§-percentile of points.
Then L is recomputed for the new hyper-ellipsoid parameters and the remain-
ing cluster points. Now that the effects of the discarded points are completely
purged, the final cluster s value is set to L.

Once s values are selected for each cluster, a test point p is declared to be a
member of class C iff (p — u)TY " (p — u) < s for any of the k ellipsoids of C.
The time complexity of testing a point for inclusion in the k clusters of C' takes
O(k[d? + d]) ~ O(kd?) time, while creating the k ellipsoid models has a time
complexity of O(kn%d?).

In order to get the best performance from the classifier, the values for k
and § are determined experimentally for each test domain. Where increases in
k and decreases in § coincide with a decrease in generality in the interest of
increased probability of detection and vice versus for a decrease in probability
of false alarms. It is possible that the approach could be automated to make use
of G-means methodology (Pelleg and Moore, 2000) for determining k where a
Gaussian mean for each dimension is determined based on the covariance matrix.

The flexibility of this classification paradigm allows for uses in many possible
domains. However, as this research focuses mostly on evaluating anomaly classi-
fication. The next section describes the testing regimen used for evaluating these
three techniques and demonstrating the importance of the tradeoff between a
tight fit to normal with generality.

4. Testing Methodology and Results

The convex polytope, hyper-sphere, and hyper-ellipsoid are tested against the
Voting dataset from the UCI Machine Learning Repository (Blake, et al., 1998)
to evaluate their strengths and weaknesses. The classifiers are then tested on the
MIT Lincoln Labs Intrusion Detection dataset and the lossy-compression ste-
ganalysis domain to show performance on realistic anomaly detection problems.

For each dataset, 90% of training class instances are randomly selected and
are used to create the class model. Next, the model is tested against the remaining
10% of the class instances plus a randomly-selected 10% sampling of the other
class(es). This random model creation and test process is repeated ten times for
each class. The means and standard deviations for the Probability of Detection
(Pp) of the anomalous class(es) and the Probability of False Alarms (Pp) on the
normal class are collected. These statistics are of interest as they demonstrate
both how well each technique identifies anomalies as well as the percentage of
normal samples misclassified.

For all convex polytope tests, the 3 value is ranged from 0.1 to 1.0 in steps
of 0.05. For the hyper-sphere and hyper-ellipsoid k-means variants, k is tested
at 1 to 5 in steps of 1, and 5 to 100 in steps of 5, with ¢ set to 0.9, 0.95, and 1.0.
Because of the use of § to make the spherical and elliptical models fit normal as
closely as possible the choice was made to not use a k prediction method (Pelleg
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and Moore, 2000; Hamerly and Elkan, 2003). The interactions of these variables
are shown with respect to the Voting database in the following subsection.

4.1. Voting Database

The Voting database contains the voting records of members of the 1984 U.S.
House of Representatives on 16 key votes. Each instance in the database rep-
resents an individual member of Congress who belongs to one of two classes:
Democrat or Republican. The database includes 267 Democrat and 168 Repub-
lican instances. The instance attributes are the choice of each Congress member’s
16 votes. Each attribute has one of three values: ”yea”, "nay”, and ”unknown”
arbitrarily mapped to 1, -1, and 0, respectively.

Blind normal models are created for each of the two classes (Democratic and
Republican). Due to the dimensional complexity of the convex hull algorithm,
the convex polytope classifier trains on only the first seven of the 16 attributes.

The most accurate 3 values, as determined by the best balance between the
detection and false alarm probabilities, for the Republican blind model range
roughly between 0.45 and 1.0, shown in Figure 3. The best 3 for the Democrat
model is at about 0.3. At these 3 values both models exhibit good and stable
classification accuracy with low incidence of false positive and false negative
matching errors. The Republican model has a Pp = 95.7% and Pr = 24.5% at
B = 0.75, versus the Democrat model’s Pp = 95.6% and Pr = 9.8% at 3 = 0.3
(Table 1). It is also important to note that there are only a few [ values that
modify the clustering of the convex polytope appearing as plateaus in Figure 3.

The hyper-sphere models do not perform as well as the convex polytope.
At every value of k the models exhibit inferior balancing of false positive and
false negative errors, shown in Figures 4 and 5. The best accuracy for the blind
Republican and Democrat models results in a Pp = 75.2% and Pr = 22.8 at
k =15 and Pp = 87.8% and Pr = 13.2% at k = 70, respectively. However, these
values reflect that the hyper-sphere model is not sufficiently stable as the k value
changes can cause dramatic change in the accuracy.

The average accuracy of the best performing ellipsoid models at each § value
are summarized in Table 1 and Figures 4 and 5. The best performing models for
all § values (highlighted in the table) occur at k = 1, which suggests that the
attribute space of each class is not disjunctive and is well represented by a single
convex shape. The Democrat class appears to have a number of statistical outliers
that cause false-positive problems when included in the class model (6 = 1).
When 5% of the most extreme points are discarded (6 = 0.95) performance
increases dramatically from 66.3% to 90.8%. It seems there are a few Democrats
whose voting records are more typical of Republicans. The Republican model, on
the other hand, performs best when no points are discarded (§ = 1), indicating
greater consistency within the class. Overall as seen in Figures 4 and 5, the value
of k£ has a large effect on the performance of the hyper-ellipse where the setting
of ¢ reduces the false alarms and detection probabilities for smaller values.

Overall, for this dataset the hyper-ellipsoid model outperforms both the more
general (hyper-sphere) and the more specific (convex polytope) classifiers. This
underlines the importance of the balancing of the degree of generalization, and
is also evident in results from the Iris and Diabetes UCIMLR datasets (7).
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Table 1. Voting Database: Best scores for each model type.

Class Hyper- Hyper-
Modeled Convex Polytope Sphere Ellipsoid
score B score k score k
Pp 957+ 5.4 75.2 £ 21.1 98.2 + 5.9
Democrat — p" 945191 939 99gi04 0 ye7x34 L O
. Pp 956 £ 3.6 87.8 + 13.3 92.2 + 3.9
Republican P 98 + 6.1 0.75 13.2 + 9.0 15 1.8 + 2.7 1 1.00
Table 2. Week 2 Attack Proﬁlz -
ttac Start .
Day Attack Type Time Duration
1 Back DOS 9:39:16 00:59
2 Portsweep Probe 8:44:17 26:56
3 SATAN Probe 12:02:13 2:29
4 Portsweep Probe 10:50:11 17:29
5 Neptune DOS 11:20:15 4:00

4.2. IDS Experiment

The dataset used for this experiment was obtained from the Lincoln Laboratory
of the Massachusetts Institute of Technology (Haines, et al., 1999). Although
this data set has been shown to be statistically different from normal traffic
(Mahoney and Chan, 2003), its many uses by the research community allow for
comparison with other approaches. For this experiment, we used the 1999 data
set, with week 1 (normal traffic) to train our classifiers, and week 2 (normal
traffic mixed with attacks) for testing. Abnormal activity includes both internal
(misuse) and external (hacking or denial of service) attacks, but not the external
use of operating system or application exploits, as shown in Table 2.

We follow the same data preparation methodology as (Dasgupta and Gon-
zales, 2002) and collect statistics on the number of bytes per second, number of
packets per second, and number of Internet Control Message Protocol (ICMP)
packets per second for classification features. This results in 4800 normal data
samples from week 1 for training, and 5202 data samples from week 2 for test-
ing, of which 64 of these represent the attacks from Table 2. These features were
sampled each minute from the raw tcpdump data files. Dasgupta and Gonzalez
showed that while none of these features alone reliably detects the five attacks,
combining the features was quite effective. They also explored overlapping the
time series as a means of detecting temporal patterns, with their best results
generated using a sliding window of three seconds. Detection and false alarm
probabilities were calculated by comparing the classifier output with the Week
2 attack data. Table 3 shows the results of testing the k-means sphere and el-
lipse classifiers, the convex polytope, and the Artificial Immune System (AIS)
results (Dasgupta and Gonzales, 2002). The table contains the best results found
for Probability of False Alarm, and Probability of Detection, for each algorithm
with the exception of the AIS which includes the results for 1 and 3 time slices
from (Dasgupta and Gonzales, 2002).

As shown in Table 3, the ellipsoid model with its added capability of gener-
alizing beyond the strict sampling better fits the training data over the convex
polytope. In addition, the results show that the sphere version of k-means per-
forms poorly predominantly because it inaccurately covers the training attribute
space by also enclosing space including anomalous data points. This continues
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Table 3. IDS Results.

Convex N
Polytope Sphere Ellipse AIS

£ >0.3 [(=0.1 k=75 k=100 k=30 k=75 1 time 3 time

6=1.0 6=0.9 6=1.0 6=1.0 slice slices

Pp (%) 98.2 100.0 1.82 5.45 98.2 100.0 92.8 98.0
Pr (%) 0.27 0.35 0.0 1.02 0.0 0.2 1.0 2.0

even as k increases and each cluster decreases in size. The reason the sphere does
not perform as well as the other two geometric constructs is that the k-means
classifier uses the point furthest from the mean to estimate the size of the hyper-
sphere, resulting in an over-generalization. This contrasts with the ellipse and
convex polytopes which maintain a closer fit to the training data. These results
imply that the convex polytope and the hyper-ellipse k-means had little trouble
fitting the training data, and that their ability to more tightly fit the self space
improves their overall performance for classification based on these three statis-
tical attributes. Additionally this shows that although both models fit the data
closely that the added generality of the hyper-ellipse k-means reduces the false
positives which is counter to the assumption that one would want the closest fit
to the training data for anomaly detection.

4.3. Steganalysis Experiment

Steganography refers to hiding information in an innocuous place so that it may
be transmitted without notice. With digital images, the message is hidden within
a cover image. The steganograpy process varies the image’s pixels in such a way
that the changes are virtually undetectable to the human eye. The cover images
that provide the most difficulty for message detection are JPEG images.

JPEG compression is a lossy image compression technique that exploits the
fact that the eye cannot detect subtle changes in an image. In a JPEG image,
a message is stored using the least significant bit (LSB) or by manipulating the
rounding errors of the quantized discrete cosine transform (DCT) coefficients of
each 8x8 iamge block.

For the lossy steganography problem there have only been a few applications
of learning models for normal images, and none have used any type of clustering.
Approaches which make use of both self and non-self data have used Fisher’s
linear discriminant, Support Vector Machines with image quality metrics, and
wavelet statistics calculated from the suspect images (Farid and Lyu, 2003; Lyu
and Farid, 2002; Lyu and Farid, 2004; Avcibas, et al., 2002). (Kharrazi, et al,
2005) provides a survey of the metrics available and their utility for steganalysis.

In steganalysis as in other security domains, difficulty arises when the classi-
fier requires examples from the anomalous class in order to detect the anomaly,
but may not have examples in the case of a novel embedding technique. In this
case, anomaly detection provides the best means of detecting the novel embed-
ding technique. and the blind or one-class learning methodologies applied to this
leaning problem have consisted of Artificial Immune Systems (Jackson, 2003)
and single class Support Vector Machines (Lyu and Farid, 2004).

For this domain we test using the wavelet coeflicient statistics (Farid and
Lyu, 2003) derived from a database of 1,100 grayscale images. The best three
of the 36 coeflicients determined by J-score are extracted from each image. In
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addition to clean images, the testing set includes steganographic images created
with Jsteg, and Outguess with (OutguessS) and without (OutguessNS) statistical
correction. For each of these three steganography methods, images are created
using 100%, 50%, 25%, and 12.5% of the cover image’s embedding capacity.
Ten iterations of training and testing are performed, where for each iteration,
18% of the clean image class is randomly selected for training and a random
9% of each class clean and dirty are used for testing. Testing is conducted on
one embedding percentage at a time, and the results from the best performing
parameter settings are averaged. Where the best performing parameters are for
the convex polytope 8 = 0.1, for the hyper sphere k£ = 40, and for the hyper-
ellipse k =1 and 6 = 0.85.

Figure 6 shows the average detection percentage over the 4 embedding capac-
ities from the steganography testing compared with the results using the same
testing domain and an AIS from (Jackson, 2003). As seen with the IDS problem,
the closer fit to self provided by both the convex polytope and ellipse k-means
outperforms the more general sphere k-means. However, just as the results in
the previous datasets show, striving for the closest fit possible, i.e. the convex
polytope, creates a lack of generality, especially on the Jsteg dataset, that is
detrimental to the convex polytope over the ellipse k-means.

4.4. Summary of Results

Of the test results shown, the steganalysis results are the most revealing because
the information hiding community specifically strives to make the embedded
cover image appear as normal as possible. Additionally, they have had a lot more
practice at it than the network attacks seen in the IDS dataset. The outcome
of the steganographer’s experience results in an extremely difficult domain in
which to perform anomaly detection.

Table 4 shows a summary of the results, listing for each domain, the number
of classes and attributes in the domain as well as the probability of detection Pp
and the probability of false alarms Pr for each class. The bolded values highlight
the model which achieved the best overall accuracy. In the steganalysis domain
as in the other datasets, the highest overall accuracy occurs with the hyper-
ellipsoid. The reason for this is that while seeking to fit the normal space, the
algorithm retains generality provided by the bias of it’s geometric representation.
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Table 4. Summary of Testing Results.

Best Anomaly-Based Accu-

Database Info racy for Each Class Model %

Convex H _ H _
Name Classes Attributes Poly- S yper yper:
phere Ellipsoid
tope
) P 95,95 75,88 98,92
Voting 2 16 Pr 24,10 23,13 17,2
Pp 100.0 5.5 100.0
DS 2 3 Pr 0.4 1.0 0.2
Stego 2 3
JSteg 69.3 48.1 83.4
OutguessNS 44.8 30.9 55.5
OutguessS 26.5 15.4 28.1
False Alarms(Pr) 5.9 6.6 9.4

The increase in generality tends to result in smaller false alarm probability,
while the more complex models increase the detection probability. This aligns
with the bias complexity of each of the geometric models which the bias de-
creases from sphere to polytope, the model fits the self space more closely with
less generality. Which for anomaly detection against an adversary attempting
to resemble normal behavior a close fit to self space could be considered advan-
tageous. However, as is shown in Table 4, rarely does the most general (hyper-
sphere) or most specific model (convex-polytope) outperform the other models.
Because the hyper-ellipse is a good approximation of the convex polytope it pro-
vides the benefits of the approaching a tight fit of the space while maintaining
the advantages of the more general model.

5. Conclusion

For security anomaly detection domains, a concern prior to fielding a detection
system is whether it can be defeated by an attacker manipulating their attack
to appear as normal traffic. From an anomaly detection problem view, we have
compare the benefits of the casting of the search problem as a generalization
of the normal data and whether generalization reduces the anomaly detection
accuracy and if there should be a preference toward fitting the normal "self” data
more closely. This has been tested on two security domains, intrusion detection
and steganalysis, and additionally on the Voting, Iris, and Diabetes datasets.
The results for all of these datasets demonstrate that for anomaly detection,
generality is required to reduce the false alarm probability, but one must select
a bias that fits self closely to improve the detection probability.

The three techniques demonstrated in this article each perform blind classi-
fication with different geometric biases in the decision space. This paper shows
that while the more complex convex polytope provides the tightest fit to self, the
hyper-ellipse provides the best balance between fit and generality, and that both
outperform the simplest hyper-sphere model. The small amount of generality
provided by the ellipse results in the hyper-ellipse k-means outperforming the
other methods on 91% of the datasets.

The results have demonstrated that the elliptical bias performs best due to
it’s capability of accurately estimating a convex polytope (Melnik, 2002) while
retaining generality due to it’s simpler bias. This indicates that in learning models
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of normal that the investigator must examine the learning technique being used;
ensuring that the normal space closely fits normal and that the technique used
does not have an overly complex bias, still providing generality in order to best
detect and prevent previously unseen security attacks.
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