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Abstract—Cooperative agent systems often do not account for
sneaky agents who are willing to cooperate when the stakes are
low and take selfish, greedy actions when the rewards rise. Trust
modeling often focuses on identifying the appropriate trust level
for the other agents in the environment and then using these levels
to determine how to interact with each agent. Adding trust to
an interactive partially observable Markov decision process (I-
POMDP) allows trust levels to be continuously monitored and
corrected enabling agents to make better decisions. The addition
of trust modeling increases the decision process calculations, and
solves more complex trust problems that are representative of
the human world. The modified I-POMDP reward function and
belief models can be used to accurately track the trust levels
of agents with hidden agendas. Testing demonstrates that agents
quickly identify the hidden trust levels to mitigate the impact of
a deceitful agent.

I. INTRODUCTION

The concept of trust is central to agent interactions in
much the same way as human interactions. Just as a person
refuses to buy a car from a salesman he does not trust, an
autonomous agent refuses to cooperate with an agent it does
not trust. Trust can be thought of as the fundamental difference
between a cooperative and a competitive environment. In a
completely cooperative environment, the agents trust and rely
on one another to accomplish their goals. In a competitive
environment, agent a believes that agent b will act in its own
best interests to the detriment of agent a. In between lies a gray
area where agents must choose whether to cooperate based on
their belief in the trustworthiness of others.

Typical trust modeling treats trust as a hidden rating [1]—
[3]. Once an agent identifies the appropriate rating of another
agent, it uses that rating to determine whether or not to interact
with the other agent. This method is similar to the eBay™ user
rating system. An eBay buyer looks at the ratings of a seller
before deciding to purchase an item. If the seller has a positive
score, the buyer can purchase with confidence. An occasional
pitfall with this system is a deceitful seller looking to cash out.
The seller builds a large positive rating before selling several
high priced items that he never intends to deliver. Buyers pay
for the items and the seller vanishes with the money.

A similar scenario plays out in a multi-agent environment
for a variety of reasons. A sneaky agent can act trustworthy for
a period of time to build trust until it decides to betray the other
agents around it. A hacker can alter an agent’s programming
causing it to compete instead of cooperate. A random bit

flip could corrupt an agent causing it to behave sporadically.
This paper extends the traditional I-POMDP framework to
fully incorporate trust modeling. The enhanced trust modeling
allows the agents to quickly recognize and adapt to behavior
changes to maximize their performance.

The addition of trust modeling into the I-POMDP dynam-
ically alters an agent’s reward function and indirectly alters
the other agent’s belief models concerning an agent. Within
an [-POMDP environment, an agent’s actions are governed by
its reward function. A trustworthy agent performs cooperative
actions that achieve the highest collective reward while an
untrustworthy agent subverts the collective good to achieve
higher personal rewards. Each agent maintains belief models
that are expanded to include the estimated trust level of
the agents it interacts with. When the agents do not act in
accordance with their model, their trust rating is changed
affecting future interactions between agents. Testing of a trust-
based I-POMDP simulation illustrates that the framework
quickly identifies and reacts to hidden trust levels preventing
additional betrayal. The testing includes a direct comparison
between the trust-based I-POMDP and another trust model.

II. TRUST

In a cooperative environment, autonomous agents require
an implicit level of trust to work together. An agent chooses
to cooperate if it anticipates that it will receive the highest
expected reward by working with another agent. If one agent
does not trust another agent, the prospect of a reduced ex-
pected reward causes that agent to avoid cooperating. If trust
completely breaks down within the system, all agents may
choose to work independently resulting in cooperative tasks
not being accomplished.

The typical obstacle with trust modeling is an agent’s ability
to determine the appropriate level of trust for other agents
within the environment. Quickly and accurately determining
the correct trust rating allows the agent to maximize its ex-
pected reward and minimize the damage caused by a deceitful
agent. Failure to identify the proper trust rating results in
reduced task accomplishment and lower individual rewards.
Several techniques have been used to establish trust ratings.

One common approach builds a network of trusted agents
[3], [4]. An agent polls its network to get recommendations
about an unknown agent, and the agents in its network
return their recommendations which are then combined into



a single trust rating. If one of polled agents does not have
a recommendation about the unknown agent, it will poll its
own trust network for recommendations. While this method
is not demonstrated in this paper, it is a useful trust rating
system in larger multi-agent environments where an agent is
not constantly interacting with the same agent. The network
approach allows agents to pass information back and forth,
quickly propagating the outcomes of past interactions. This
method does not work for domains with only a few agents
because there is no network to build.

A second approach uses a series of nonbinding interactions
between agents to determine trust [1]. The agents communicate
their intentions to one another prior to acting. This technique
mimics the human ability to get a feeling for whether or not
to trust a new acquaintance. This paper utilizes nonbinding
interactions to help determine when agent trust levels fluctuate.

Trust vectors [5] model complex domains by tracking mul-
tiple trust values for a given agent. The values are stored in
a single vector that is normalized to give a trust rating at a
particular time. Trust vectors allow trust modeling to extend
to multidimensional domains where an agent is trustworthy in
some aspects and deceitful in others. If an agent is trustworthy
on cleaning tasks but deceitful on purchasing tasks, the other
agents can identify these differences and choose to cooperate
on future cleaning tasks. A trust vector can also contain a
history of an agent’s actions with a decay rate to reduce the
impact of actions further in the past. This paper utilizes trust
vectors for comparison testing against our algorithm.

Trust ratings based on fuzzy sets [6] use a series of
overlapping categories to determine the trust rating of an
agent. An agent’s trust rating is based on the aggregate of the
probabilities that the agent belongs to each of the individual
categories. Once again, a time decay function can be used to
reduce the impact of less recent actions.

Experience based models [7] rely on past interactions. The
outcomes of previous interactions form the agent’s trust rating
for future interactions. This type of model is useful in domains
that allow repeated interactions with the same agents.

Adaptive trust modeling [8] dynamically combines reputa-
tion based models and experience based models. Reputation
systems suffer when reputations are inaccurate. Experience
systems have difficulty forming initial trust ratings and suffer
in environments that do not allow repeated interactions. Lever-
aging both models allows an agent to overcome the drawbacks
of the individual models.

All of the trust techniques use the current trust value in the
decision process. This neglects the possibility that an agent
cooperates on small tasks to build a high trust rating and takes
a greedy approach when the stakes are higher. In a dynamic
trust environment, trust values can fluctuate due to adversary
hacking, software/hardware error, greed, or some other reason.
If trust values were to change, the same techniques can be
reused to evaluate the new trust level, but the agent must
quickly identify the change in trust. Failure to identify the
change leaves the agent open to exploitation by the other
agents.

III. MULTI-AGENT DOMAINS

Multi-agent environments allow a number of autonomous
agents the opportunity to achieve an expanded set of goals
through cooperation. While a single agent may not possess all
of the requisite skills to perform a complex task, a group of
agents working together can accomplish it. Task accomplish-
ment requires some level of coordination between the agents
to ensure each agent performs its portion of the overall task.

A partially observable Markov decision process (POMDP)
[9] allows a single agent to cope with uncertainty about its cur-
rent state while operating in a stochastic environment. Several
methods, including decentralized POMDPs (DEC-POMDP)
[10] and I-POMDPs [11], extend this model to multi-agent
environments by tying a series of individual POMDPs together.
The DEC-POMDP utilizes a single group reward for all of the
agents which works well in a cooperative environment. The I-
POMDP uses individual reward functions for each agent which
are required in a trust modeling domain.

An I-POMDP, consists of the tuple

(I1Si, A, T;, %, Oy, Ry) (1)

for each agent ¢ within the environment, where I.5; is the
set of interactive states S x M;, S is the set of environment
states, and M is the set of models of agent j. Each model m;
consists of the pair (f;, h;) where f; is a function that maps
the possible histories of j’s observations to its actions and h;
is one of the possible histories.

A is the set A; x A; of joint actions of all agents.

T; is S x A x S which is the transition model that defines
the probability that an agent’s actions will change the state.

Q; is the set of observations an agent can make.

0O; is S x A x §; which is the probability that agent taking
action a in state s will make observations §2.

R; is IS; x A — R which is the expected reward agent &
receives from taking action a in states %s.

An agent’s state belief is a distribution over S. The belief,
b, in the current state being s’ encompasses the changes in
the initial belief, bf_l, as a result of taking action, af_l, at
time, ¢ — 1, resulting in the current set of observations, of,
which is:
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While an agent does not directly alter another agent’s belief
model, an agent’s actions affect the current state which does
change the other agent’s current observations. The other agent
attempts to reconcile its current observations with its expected
observations by adjusting its belief model including the models

of all of the agents in the environment.

IV. TRUST-BASED [I-POMDP

The trust-based I-POMDP (TI-POMDP) is a modified ver-
sion of the I-POMDP. The TI-POMDP maintains the basic
components of the I-POMDP, and adds trust modeling as a



primary decision factor for the agents. In addition to the state
belief model (an agent’s estimate of the current environment),
an agent maintains and updates a trust model (a rating of
the trustworthiness of the other agents) for the environment.
This trust model contains an agent’s level of trust in the other
agents. This level of trust helps the agent decide whether or
not to cooperate with another agent on a given task.

Each agent maintains a trust belief model, 7. Agent ¢’s trust
belief model includes the true trust level of 7 and #’s estimate
of the trust level for every other agent j in the environment.
In addition, ¢ must also estimate every other agent j’s trust
level for every other agent ;' in the environment. This includes
agent j’s trust level of agent :. If agents ¢, j, and k are all
assigned to a task and agent i believes all three agents are
trustworthy, agent ¢ may still avoid cooperating on the task
if it believes that agent j does not trust agent k. The reward
function examines 7; to determine the expected reward for a
given state. If agent j does not trust agent k£ according to 7,
then agent ¢’s expected reward for working with agents j and
k decreases because agent ¢ does not believe that agent 5 will
work with agent k resulting in agent j not fully cooperating
on the task.

After adding trust to the I-POMDP framework, the TI-
POMDP tuple remains (I.S;, A, T;,Q;,0;, R;, ), where

e IS, for agent i is the set of interactive states S x M;
where S is the set of environment states, and Mj; is a
model of agent j, Vj # i . Each state s includes a trust
belief model 7;. Each model m; consists of the tuple
(fj,hj, 7,;) where f; is a function that maps the possible
histories of j’s observations and 4’s trust belief model of
J to j’s actions, h; is one of the possible observation
histories, and 7; ; is 4’s trust rating of j. Agent ¢ uses
m,; to predict agent j’s actions. Agent 7 bases its action
decision in part on the prediction of agent j’s action.

o Ais the set A; x A; of joint actions of all agents.

e T;is Sx A xS’ which is the transition model that defines
the probability that an agent’s actions will change the
state. The change in state includes the change ;.

o (); is the set of observations an agent can make.

e O;is Sx Ax); which is the probability that agent taking
action a in state s will make observations §).

e R;is IS; x A — R which is the expected reward agent
1 receives from taking action a in state 7s.

At a given time step, an agent calculates the expected reward
for each of its potential actions from each of its possible states.
The agent selects the action with the highest estimated reward.
After taking the selected action and observing the changed
environment, an agent updates its state belief model before
attempting to decide on its next action.

The state belief update requires the agent incorporate its
current observations into its previous state belief in an effort to
determine its current state. The agent calculates the likelihood
of making its current observations in each of the possible
states it may have reached given the distribution over the prior
state(s) and the action(s) taken. The previous state belief is

then updated based on the observation likelihoods for each
state.

The trust model, 7, is a component of the state belief, but
only is updated based on the observations prior to the state
belief update. The agent decides on a current trust model
and then creates its current state belief distribution. The new
trust model is based on the trust model from the previous
state belief. The transition to the new trust model occurs as
the agent incorporates its current observations. The current
observations include information about the actions taken by the
other agents in the environment. An agent evaluates this action
information to determine whether the other agent’s actions
were trustworthy or deceitful and updates its ratings of that
agent accordingly.

The complexity of ; depends on the domain requirements.
In the simple case, 7; can be a single binary number represent-
ing whether agent ¢ is trustworthy or an integer representing
what level agent ¢ attempts to betray. In the more complex
case, 7; can be a series of trust rankings corresponding to
different types of tasks or dimensions within the domain such
as a fuzzy set or a trust vector.

If agent a observes agent b commit an untrustworthy act,
agent a reduces its trust rating of agent b based on the rules
of the trust modeling representation used (ie. trust vectors or
reputation based). Additionally, if agent a believes agent c also
observed agent b’s action, agent a lowers its estimate of agent
¢’s trust rating of b. The overall effect is that agent a places
less trust in agent b and agent a believes that agent ¢ also
lowers its trust in agent b. Agent a uses this trust model in
future interactions to decide whether to interact with agent b
and to estimate how agent c interacts with agent b.

In an environment with trust modeling an agent’s reward
function is a direct product of its trust rating. A trustworthy
agent values cooperative tasks while an agent that is being
untrustworthy values tasks that undermine cooperation. Within
the I-POMDP framework, the reward function for an agent
with multiple potential trust levels can be thought of as two
or more separate reward functions. Each individual function
directly corresponds to a specific trust rating for the agent.

The simplest case occurs when an agent can be either
completely trustworthy or completely deceitful. The agent
appears to have two reward functions that become inverses of
one another for interactive states that are identical other than
the agent’s trust value. For instance, if agent a has the option
of helping a trusted agent b move an object, the trustworthy
agent a decides to move the object while the deceitful agent
a decides not to move the object.

In a more complex case, agent a can appear to have a series
of reward functions due to a larger range of trust ratings.
Scenarios where an agent has multidimensional trust ratings
[1] also increase the reward function complexity. Multidi-
mensional trust occurs when an agent is trustworthy in some
aspects within the environment, but not trustworthy in others.
Ultimately, what appears to be two or more reward functions is
actually one large reward function where the interactive state
depends on the trust rating for the agent.
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Fig. 1.
Attacker.

An image of the Defender Simulation with three Agents and one

V. THE TI-POMDP SIMULATION

The TI-POMDP Simulation Defender focuses on a group
of agents working together to defend an installation from
attackers. When an attacker is identified, a subset of the agents
are tasked to destroy the attacker. Each agent must decide
whether to cooperate with the other tasked agents based on
its individual goals and the amount of trust it has in the other
agents. The defense scenario was selected because it provides
an environment capable of utilizing multiple agent types, a
wide range of actions, and a variety of observation and reward
functions. While these aspects only have a few settings in this
paper, future work can utilize this large domain.

After each task is completed, the agents gain insight into
the motives and allegiances of the other agents to help refine
their trust models of the other agents. The refined trust models
are used in future decisions.

The simulation is a Java based application with a visual
depiction of the agents operating in the environment. The
environment consists of a simple building with two doors as
shown in Figure 1.

Figure 2 depicts the major components of the simulation.
The Environment Controller is an “Eye in the Sky” overseeing
the creation and execution of the simulation, but not actively
visible in the environment. Attackers and agents move through
the environment. A TI-POMDP is used to model the agents,
govern their action decisions, and distribute rewards. The
primary functions and responsibilities of each component are
listed below.

TI-POMDP

Environment
Controller Model
S %
G‘e'b\e ks controls
Attackers Agents State Belief
Updates
Moy o dec; .
oy, %Or; 6\0‘\\_‘0\ p ision provides
5 o™ o7 current
Behavior State-Action-
Framework Reward
Distributions

Fig. 2. The major components in the trust simulation.

A. Environment Controller

An Environment Controller initially creates and randomly
distributes the Agents in the space. During the simulation,
the Environment Controller creates and randomly distributes
a number of Attackers along the perimeter of the simulation
space. The number of active Attackers at any given time is
limited by a threshold set prior to running the simulation.
When the number of Attackers reaches the threshold limit, the
Environment Controller waits until an Attacker is destroyed
before it creates a new Attacker. When it creates an Attacker,
the Environment Controller creates a task and assigns the
task to a random group of agents. This allows the simulation
to focus on the interactions between the Agents, not the
sensor capabilities of the Agents and the task distribution
process. This also eliminates a potential trust exploitation
where an Agent assigns false tasks to trustworthy Agents.
The number of Agents assigned to each Attacker is random.
Agents without prior task commitments are assigned first. If
necessary, Agents with prior task commitments are assigned.
These Agents complete the tasks in the order they arrive to
eliminate starvation.

The Environment Controller maintains the current reward
level for the active tasks. The reward level based on whether
previous actions were successfully completed via cooperation.
The number of reward levels is equal to the number of
Agent trust levels (set prior to simulation) minus one. If
the simulation has three trust levels, then each action can
have either level 1 or level 2 rewards. If Agents successfully
cooperate with a level 1 reward, the next action has a level
2 reward. Higher reward levels do not change the number of
assigned Agents.

The Environment Controller does not maintain trust ratings
on the Agents, assign Agents based on their past performance,
or attempt to maximize expected utility of the task. This
forces the individual Agents to track and reason about the
trustworthiness of the other Agents in the environment. If the
Environment Controller tracked the trust ratings of the Agents,
it would not assign untrustworthy agents to tasks, resulting in
their isolation. While this action is desired in most scenarios,
it reduces the simulation’s testing ability of the TI-POMDP



framework. When known untrustworthy Agents are assigned
to a task, the other Agents tailor their actions to isolate the
untrustworthy Agents and mitigate the damage they cause.

B. Attackers

Attackers are created at the edge of the environment and
attempt to move toward the center. Since Attackers are not
modeled by the TI-POMDP, they do not receive rewards for
reaching the center. The Attackers are enemies with an initial
strength of 100. Once an Attacker’s strength is depleted it is
rendered useless, removed from the environment, and the task
of the Agent’s assigned to defeat the Attacker is complete.

C. Agents

Agents have two mutually exclusive tasks, patrolling the
environment and defeating Attackers. The patrolling behav-
ior consists of randomly wandering the environment. Once
assigned, Agents engage and destroy the Attacker before
returning to their patrol duties.

The motion of individual Agents and Attackers is controlled
by a behavior-based architecture [12]. An Agent’s behavior set
consists of random walking and going to a target. The specific
behavior is determined by the task assigned to the Agent.
All tasks include the wall following and obstacle avoidance
behaviors to help maneuver through the environment.

Only Agents assigned to a particular task are able to affect
that task. If an unassigned Agent is in the vicinity of the
Attacker, it will not engage the Attacker. This focuses the trust
analysis just on the team of Agents assigned to the task. The
Agents do not have to worry about an outside Agent hindering
their ability to complete the task. Unassigned Agents may
observe the actions of assigned Agents and update their trust
model accordingly.

An Agent engaging an Attacker decreases the Attacker’s
strength by 25 points every time it chooses an action. When
an Agent decides to betray another Agent, it adds 15 points
to the Attacker’s strength. In the case where two cooperating
Agents engage a single attacker, each Agent depletes 25 points
from the Attacker. After the two Agents engage the Attacker
a second time, the Attacker is eliminated with each Agent
responsible for 50 points versus a single Agent taking 4 rounds
and 100 points. If a cooperating Agent and a betraying Agent
engage an Attacker, the cooperating Agent depletes 25 points
from the Attacker, and the betraying Agent adds 15 points for
a net change of —10. Two betraying Agents add 30 to the
Attackers strength.

D. TI-POMDP

The TI-POMDP framework is updated when a task is first
identified and Agents are assigned to it. Each Agent uses
the framework to decide which action to take. After action
execution, the TI-POMDP framework is updated based on the
observations. The TI-POMDP consists of the interactive states,
actions, transition function, observation function, and reward
function.

The domain’s interactive state consists of the Agent’s trust
model,the task level, and which Agents are assigned to a task.

This is the smallest possible state for this domain (as opposed
to including Agent locations and any other environmental
factor). This size reduction allows the simulation and testing
to focus on the uncertainty of the trust model rather than the
uncertainty created by the environment.

The Agent’s action set includes “cooperating,” “working
alone,” “betraying,” “concealing,” or ‘“redeeming” actions.
Their choice of action depends on their trust model. An
untrustworthy Agent chooses to “betray” or “conceal” while
a trustworthy Agent chooses to “cooperate,” “work alone,” or
“redeem.”
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o Cooperating Agents diminish an Attacker’s strength by
25 points. Cooperating Agents assume that the other
assigned Agents will diminish an Attacker’s strength by
their share.

o Agents working alone always diminish an Attacker’s
strength by 25 points. Agents working alone assume that
the other assigned Agents will not diminish an Attacker’s
strength and may try to increase the Attacker’s strength.

o Betraying Agents always add 15 points to the Attacker’s
strength.

o Concealing Agents always diminish an Attacker’s
strength by 0.1 points. This action allows a concealing
Agent to act like it is helping so unassigned Agents
cannot determine an accurate trust rating.

o Redeeming Agents have the same effect as cooperating
Agents, but are making a conscientious decision to work
with Agents that do not trust them. This exposes the
Agent to potential betrayal as the Agent selects a course
of action that has a lower immediate expected reward
(versus working alone).

The transition function maps one state to the next based on
the Agent’s actions. The transition function first updates the
individual Agent trust models based on the their actions. At
this point, each Agent has a probability of being corrupted or
redeemed based on their actual trust level. The probability of
an Agent’s trust level changing is governed by the corruption
and redemption rates given at the start of the simulation. The
rates range from 0.05 to 0.5 and the two rates can be adjusted
independently of one another. If the corruption rate is 0.1
and the redemption rate is 0.3 a trustworthy Agent has a 10
percent chance of becoming more untrustworthy while an un-
trustworthy Agent has a 30 percent chance of becoming more
trustworthy. If an Agent is somewhere between trustworthy
and untrustworthy, there is a 0.05 probability (0.5 % 0.1) of
becoming less trustworthy and a 0.15 probability (0.5 * 0.3)
of becoming more trustworthy. An Agent knows when its
trust rating changes, but the other Agents are not aware of
the change. The final step of the transition function adds new
tasks, removes completed tasks, and sets the reward level for
the next action.

The observation function is a probabilistic model of what
actions a given Agent sees within the environment and is tied
to the actions Agents take on a task. Agents assigned to a task
are guaranteed to observe the actions of the other assigned



Agents. Unassigned Agents may observe “cooperating,” “be-
traying,” and “redeeming” actions according to a set proba-
bility (0.5), but they can not observe the difference between
“working alone” and “concealing” actions. Unassigned Agent
observations are based on probability instead of location with
respect to the task so the unassigned Agents are not rewarded
(by receiving better observations) for neglecting their patrol
duties.

The reward function is a distribution based on the collective
actions of all Agents assigned to a specific task. Each Agent
receives its reward based on its individual action with respect
to the actions of the team that assigned to the task.

o Agents that “work alone” or “conceal” always receive

a reward of —1 regardless of the other Agent’s action
choices.

o If all Agents “cooperate,” “work alone,” or “redeem,” the

reward for the Agents that “cooperate” and “redeem” is
10 % ¢2, where t is the current reward level as set by the
Environment Controller.

o If all Agents “cooperate” or “redeem” except for a single
“betray” Agent, the “betray” Agent receives a reward of
10 * 2 while the other Agents receive a reward of —100.

o If multiple Agents “betray,” all “cooperate,” “betray,” and
“redeem” Agents receive a reward of —100. The “betray”
Agents receive the negative reward because they betrayed
each other.

o If a “betray” Agent is not paired with at least one

“cooperate” Agent, the “betray” Agent receives a reward
of -100.

The reward level effects the potential reward of a successful
cooperation or betrayal on the task. An Agent’s trust model
is composed of the reward level that it believes every other
Agent is trustworthy to. If Agent a’s trust model indicates that
Agent b is trustworthy at a reward level of 3, then Agent a
trusts Agent b when the reward level is 3 or less and does not
trust Agent b at higher levels.

Figure 3 shows the changes in trusted reward levels as
Agents cooperate and compete with each other. Agent 2’s
betrayal level limits the amount of cooperation between the
Agents and indirectly causes Agent 1’s trust level to change.
Agent 2’s betrayal level changes due to random corruption or
redemption.

To understand the Agent’s decision process start by as-
suming they only look at the immediate action and deciding
whether to cooperate, each individual Agent reviews its trust
model of the other Agents assigned to the task as well as it own
trust rating. If the Agent is trustworthy at the current reward
level and trusts the other Agents at the current reward level, it
chooses to “cooperate.” If a trustworthy Agent does not trust
another assigned Agent or does not believe that another Agent
trusts one of the assigned Agents, it chooses to “work alone.”
An untrustworthy Agent attempts to “betray” the other Agents
if it believes they are all trustworthy and that they trust it.
Otherwise, an untrustworthy Agent will “conceal” its actions.
If the Agent chooses to “conceal” it actions, it does not help
with the task, but it does not hinder it either. The other Agents
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Fig. 3. The trust interactions between agents.

can not differentiate between “conceal” and a “working alone”
allowing the untrustworthy Agent to potentially betray in the
future.

There is an additional case where a trustworthy Agent does
not believe the other Agents trust it. This Agent will choose
to “redeem” itself and cooperate on the task, knowing that it
is likely to sustain a penalty since it is doubtful that the other
Agents are planning on cooperating with it. This sacrificial
action “redeems” the Agent, resulting in the other Agents
deciding to “cooperate” with it on future tasks.

After the Agents act, all Agents within the environment
update their individual trust models based on their obser-
vations of the task. The Agents directly involved with the
task are guaranteed to observe the actions (other than the
difference between “work alone” and “conceal”) of the other
task participants. Agents not assigned to the task have more
difficultly updating their models. If an unassigned Agent does
not observe the task at all, it can not determine which Agent
took what action. If an unassigned Agent does observe the
task, it will know if another Agent “cooperates,” “betrays,’
or “redeems” and updates its model accordingly. Assigned
Agents update their trust models of the unassigned Agents
based on their probability of observing the task. This can lead
to a situations where one Agent incorrectly believes another
Agent observed a betrayal which skews the first Agent’s future
expectation.

In the simulation Agents look further ahead than just the
next action and attempt to maximize their expected reward
for a certain number of actions into the future. The simulation
explores five actions ahead to limit the search space and
reduce the time required to create the model. This look ahead
can cause an untrustworthy Agent to “conceal” in an effort
to increase the reward level for a future betrayal. On the
other hand, a trustworthy Agent that currently trusts the other
assigned Agents may decide to “work alone” simply because
the model has determined that betrayals are likely to occur at
the current reward level.

VI. TI-POMDP TESTING

A comparison test is used to measure the difference between
the TI-POMDP model and a Trust Vector model. The Trust
Vector model uses a history decay function that reduces the



TABLE I
NUMBER OF TIMES AGENTS CHOOSE TO “COOPERATE” OR “BETRAY”
USING THE TI-POMDP AND TRUST VECTOR MODELS. THE SUCCESS
RATES INDICATE THE PERCENTAGE OF “COOPERATES” AND “BETRAYS”
THAT ACHIEVE THE EXPECTED REWARD.

Corruption/Redemption
Model Action Rate
0.1 0.3 0.5
Cooperations | 94.1 913 85.0
TI-POMDP | Success Rate | 83.5 70.0 61.0
Betrays 159 314 40.0
Success Rate | 799 70.0 67.0
Cooperations | 43.6 389 339
Trust Vector | Success Rate | 73.0 57.0 48.0
Betrays 559 694 76.0
Success Rate | 13.0 17.0 17.0

impact of previous actions by five percent each time step.
The Trust Vector model is used because it handles the trust
modeling in a very different manner from the TI-POMDP.
The TI-POMDP already relies on experience modeling and the
domain does not have the communication network required for
reputation modeling.

Both models are tested with 3, 4, and 5 Agents, three
separate reward levels (1, 2, and 3) and three separate levels
of corruptions/redemption (0.1, 0.3, and 0.5). The models are
also tested with different mixes of Agents. The first mix is
a homogeneous group of Agents. The second mix has two
types of Agents, but the individual tasks may only require a
single type of Agent. The final mix of Agents has two types of
Agents and the individual tasks require representatives from
both types. The number of times Agents choose to cooperate
or betray each other are tracked.

The “cooperate” and “betray” actions are the high risk/high
reward choices for the domain. Even though “betray” actions
are considered bad, successfully “betraying” other “cooper-
ating” Agents results in a large reward indicating that the
“betraying” Agent made a good decision.

Table I illustrates the average number of times Agents
choose to “cooperate” or “betray” over the course of 50
Attackers. Since each Attacker requires multiple actions before
it is destroyed, Agents can take hundreds of total actions for
50 Attackers. Overall, the TI-POMDP model achieves higher
“cooperate” rates than the Trust Vector model. As expected,
the average number of times Agents “cooperate” decreases
while “betrays” increases as the probability of changing trust-
worthiness (Corruption/Redemption Rate) increases. This is
due to the fact that a corrupted Agent can immediately attempt
to ‘betray” while a redeemed Agent must first regain the trust
of others before it can “cooperate.”

Figures 4 and 5 show that successful “cooperate” actions
decrease and successful “betray” actions increase as the cor-
ruption/redemption rate increases. The drop in “cooperate”
success is a result of fewer “cooperate” attempts and the
higher probability that an Agent immediately becomes corrupt
after redeeming itself. The “betray” success increase comes
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Fig. 4. The effect corruption/redemption rate has on “cooperate” success.

TABLE 11
AVERAGE NUMBER OF TIMES AGENTS CHOOSE “COOPERATE” OR
“BETRAY” FOR EACH CORRUPTION/REDEMPTION RATE.

Corruption/
Model Action Redemption Rate
0.1 03 05
Cooperate | 94.1 913 85.0
TI-POMDP Betray 159 314 400
Cooperate | 43.6 389 339
Trust Vector | povay | 559 694 76.0

from the larger number of “betray” attempts that occur as the
corruption/redemption rate rises. Table II shows the number
of times Agents choose to “cooperate” or “betray” at each
corruption/redemption rate.

Table III illustrates the impact of the number of Agents, the
number of reward levels, and the mix of Agents has on the
success of “cooperate” and “betray” actions. While none of the
factors have an affect on the “betray” success rate, two fac-
tors affect the “cooperate” success rate. “Cooperate” success
decreases as the number of Agents increases. The decrease is
due to larger numbers of Agents being assigned to tasks which
increases the probability that one of them is untrustworthy.
Increasing the number of reward levels improves the number
of “cooperate” successes. This increase is due to untrustworthy
Agents choosing to “cooperate” on when the reward level is
low. The sharp decrease in “cooperate” success between Agent
mix 1 and 2 for the TI-POMDP appears to be a data anomaly
as that trend is not present in the rest of the test.

Table IV shows the average number of each action chosen
by the Agents. While both models have a large number of
Agents working alone and concealing their actions, these
individual behaviors account for nearly 80 percent of the Trust
Vector actions versus 56 percent of the TI-POMDP actions.
The lack of cooperation is the driving factor behind the Trust
Vector requiring 1.4 times the number of actions as the TI-
POMDP.

Table V shows the average reward of the Agents using



Successful Betrayals Based on
Corruption/Redemption Rate

35

30
o 2
z 5 L
= -
B o -
2 :
g RS
CPJR,' LS Means ‘~,“‘ ‘»\‘
@ 15 -
2 -
5
o
£ 10
=3
=
Corruption’
E Redemption
Rates
0 TF o1
TH-POMDP Trust Vector IIo3
<05
Trust
Fig. 5. The effect corruption/redemption rate has on “betray” success.

TABLE III
IMPACT OF SIMULATION VARIABLES ON “COOPERATE” AND “BETRAY”
SUCCESS FOR EACH CORRUPTION/REDEMPTION RATE.

. Factor Setting
Model Factor Action
1 2 3
Number of | Cooperate | 87.4 62.0 489
Agents Betray 209 21.7 203
Reward Cooperate | 41.7 69.5 87.0
TI-POMDP Levels Betray 158 246 226
Mix of Cooperate | 754 554  67.5
Agents Betray 204 21.1 215
Number of | Cooperate | 21.8 264 25.0
Agents Betray 74 108 120
Reward Cooperate | 10.8 27.2  35.0
Trust Vector Levels Betray 8.0 11.1 122
Mix of Cooperate | 23.2 25.0 24.8
Agents Betray 9.6 115 103
TABLE IV
AVERAGE NUMBER OF TIMES AGENTS CHOOSE EACH ACTION.
Action TI-POMDP  Trust Vector

Cooperate 90.1 38.8

Work Alone 91.8 175.8

Betray 29.1 67.1

Conceal 110.9 208.3

Redeem 39.4 11.0

the two models for each corruption/redemption rate. The
TI-POMDP achieves significantly higher rewards due to the
increased success of “cooperate” and “betray” actions (positive
rewards instead of -100 rewards) and less use of “work alone”
and “conceal” actions (-1 rewards).

VII. CONCLUSION

The addition of trust to multi-agent environments allows
modeling of higher complexity interactions between agents.
Sneaky agents further increase the complexity by adding extra
uncertainty to the environment as a helpful agent can quickly

TABLE V
THE AVERAGE REWARD OF THE AGENTS USING EACH MODEL BASED ON
CORRUPTION/REDEMPTION RATE.

Corruption/
Model Redemption Rate
0 .1 03 0.5
TI-POMDP | 1667.0 1111.7 688.0
Trust Vector | -196.8 -267.0 293.9

become a hindering agent. The reward function and state
representation make the TI-POMDP framework a suitable
method to capture trust modeling. The Defender Simulation
demonstrates the TI-POMDP’s ability to react to a corrupt
agent, mitigate the damage inflicted, and maintain a consistent
level of cooperation within the system. Future work for this
research is to expand the problem domain to a less observable
environment to test an agent’s ability to pinpoint the cause of
betrayal in a noisy environment.
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