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Abstract—Analyzing how agent interactions affect macro-
level self-organized behaviors can yield a deeper understanding
of how complex adaptive systems work. The dynamic nature
of complex systems makes it difficult to determine if, or when,
a system has reached a state of equilibrium or is about
to undergo a major transition reflecting the appearance of
self-organized states. Using the notion of local neighborhood
entropy, this paper presents a metric for evaluating the macro-
level order of a system. The metric is tested in two dissimilar
complex adaptive systems with self-organizing properties: an
autonomous swarm searching for multiple dynamic targets
and Conway’s Game of Life. In both domains, the proposed
metric is able to graphically capture periods of increasing and
decreasing self-organization (i.e. changes in macro-level order),
equilibrium and points of criticality; displaying its general
applicability in identifying these behaviors in complex adaptive
systems.
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I. INTRODUCTION

Complex adaptive systems (CAS) are systems composed
of a large population of agents that interact and adapt to their
environment [1]. The aggregated interactions of these agents
form complex behavior patterns [2] which appear to exceed
the summation of those interactions [3]. In other words,
the whole is greater than the sum of its parts. Historically,
these emergent [4] or self-organizing [5] behaviors make
these systems difficult to control [6]. Additionally, CASs
pose significant challenges for researchers as they operate
in dynamic environments with imperfect and incomplete
information [7]. Engineered CASs are being fielded and
interconnected every day [6], with this increased deployment
comes an increased interest in developing methods for
identifying possible self-organizing behaviors in complex
systems. As agent interactions compose the driving force
of a complex system’s macro-level behavior [8], then tying
those interactions to macro-level self-organizing patterns
becomes the critical component for behavior analysis.

Whether it is a natural or engineered complex system,
periods of stability and points of criticality occur during the
system’s lifetime. Points of criticality indicate a transition
of the current system state to another, which may be a
stable, unstable, or self-organized state [9]. For example, the

collective rush of ants to gather a new food source will dom-
inate the colony’s short-term behavior. However, as the food
dissipates, ants begin reverting back to other tasks such as
brood sorting, nest defense and refuse cleaning; ensuring the
colony’s survival [10], [11]. Natural systems undergo periods
of stability, e.g. a fairly even distribution of labor across
all known tasks, and critical events, e.g. discovery of food
creates an imbalance in ant task distribution. Langton [12]
showed that periods of quiescence, as well as chaos, occur in
cellular automata (CA), demonstrating that engineered CASs
contain similar patterns to those found in natural systems.
Cycles of stability in a CAS are indicative of a robust system
as it is able to adapt to changes in the environment. Although
prediction of such transitions and cycles is nearly impossible
in real-time systems engaged in dynamic environments, it is
possible to detect periods of stability and critical points in
an ad hoc manner.

Inspired by entropy based approaches found in [13], [14]
and newer research by [15], [16], this paper presents a
macro-level metric for identifying periods of increasing and
decreasing order. Order is the appearance and disappearance
of self-organized behavior and indicates the stability and
points of criticality in self-organizing systems. By coupling
local entropy scores with agent distribution across neigh-
borhoods, the metric captures macro-level agent dynamics,
enabling detection of system stability and points of critical-
ity. The metric is applied to both an autonomous Unmanned
Aerial Vehicle (UAV) swarm engaged in a dynamic multi-
target surveillance scenario and Conway’s Game of Life.
In both domains, the establishment of neighborhoods and
population growth affect macro-level order. If neighborhoods
remain static, i.e. the loss of population is minimal, the order
of the system remains stable. When communities die off, or
appear, noticeable departures in system order occur. Results
show that the proposed metric is able to detect changes in
system structure due to self-organized behaviors.

II. RELATED WORK

Schulman and Seiden [13] first broached the idea of
using system entropy, based on Shannon’s entropy [17],
as an indicator of order for Conway’s Game of Life in



1977. More recently, Parunak and Bruecker [14] showed
that directional entropy, a pheromone guidance approach for
a walker searching for a target in unknown space, increases
as walkers randomly move about, but reduces as agent
knowledge (i.e. a walker encounters pheromones guiding it
towards a target) increases, showing that information gain
drives down the directional entropy of the system.

Wissner-Gross and Freer [15] and Mann and Garnett
[16] take a slightly different approach. Instead of measuring
micro-level entropy, they utilize macro-level entropy scores
to guide micro-level agent decisions in complex systems.
Wissner-Gross argue that causal entropic forces, based on
maximizing system entropy, guide agents towards behaviors
known as group intelligence (i.e. self-organization). In their
view, agents independently choose actions that move a
system towards macro-states with the highest causal entropy
[15]. Their algorithm partitions the current system state
into a set of possible future states and using Equation 1,
calculates the entropic force (F) for that state.

F (X0) = T∇xS(X) (1)

Here, T represents the reservoir temperature, S(X) is the
entropy associated with the macro-state X , and X0, is the
current macro-state. In this manner, one can evaluate mul-
tiple paths through possible future macro-states with agents
choosing paths with the highest causal entropy. The main
premise is that organized intelligence is due to individual
agent decisions that result in future states that possess the
most options for the agent (i.e. highest causal entropy). The
paradox being that the organized behavior of these agents
emerges although they collectively choose to increase the
macro-level entropy of the system.

Mann and Garnett [16] extended Wisser-Gross and Freer’s
work by viewing future paths as independent Galton-Watson
processes. This allows them to assign an exponential dis-
tribution to unknown future states, conditional on path ex-
tinction probabilities [16]. Again, consensus decision mak-
ing (i.e. self-organized behavior), is the result of agents
selecting maximum causal entropic paths. However, both
approaches assume that: a)agents somehow know how to
increase macro-level entropy and, b) possible future paths,
and states associated with them, are countable, which is
one of the difficulties in trying to use entropy measures
in complex environments where state search spaces grow
exponentially.

Shannon’s definition of entropy [17] illuminates why
entropy measures are interesting. Intuitively, if the amount of
information discernible from a system grows, the system’s
macro-level entropy decreases. The correlation between a
decrease in system entropy with the emergence of a pattern
(i.e. order implies an information gain) makes Shannon’s

entropy equation a tempting approach for detecting self-
organizing or emergent behaviors in a complex system.
However, pi in Shannon’s equation (Equation 2) represents
the probability of finding the system in state i [18]. Cal-
culating every possible state for a system, especially in
continuous environments, can quickly become computation-
ally infeasible. It becomes even less practical in a real-time
system where agents make decisions in timescales as small
as microseconds.

H = −
∑
i

pi log2 pi (2)

One way to overcome this limitation is to discretize
system spaces to reduce the number of possible system
states. The benefit of such an approach is it allows one to
expediently calculate Shannon’s equation to measure system
entropy. For example, although working in continuous space,
Parunak and Brueckner [14] placed a grid over the system
space, subsuming multiple states into separate partitions, al-
lowing one to count the number of agents in those partitions
which then define the system state. Mnif and Müller-Schloer
[19] generalized the approach where one selects an attribute
of the system that is discrete and enumerable. By doing
so, one focuses on attributes of interest in which entropy
measures carry more precise meaning while reducing the
number of system states, making the use of entropy measures
tractable. However, as [14] points out, one must couple
micro and macro-level entropy in order to capture the
imposition of order upon the system.

Parunak and Brueckener’s idea is modeled after emer-
gence researchers such as Holland [4] who argue that
macro-level patterns rely on changing micro-patterns and
it is through the aggregation of simple agent interactions
that higher-level emergent behaviors arise [8]. What dis-
tinguishes emergent behavior at the macro-level is the
absence of those behaviors at the micro-level [20]. The
agents at the micro-level contain no knowledge beyond
their immediate environment, or ‘niche’ [2]; however, their
aggregated actions create complex patterns in their niche
which then aggregate to create complexity in the ecosystems
that subsume them. Agent knowledge is key here, unlike
[15] and [16], global knowledge for agents is not realistic.
Self-organized, or emergent patterns, develop from limited
local agent knowledge. The autonomous swarm introduced
in Section III will show how agents with limited knowledge
can create recognizable, global patterns by choosing actions
leading to the highest local entropy state. As macro-level
entropy changes may indicate some type of order change
or self-organized behavior [5], one must consider the ac-
cumulation of local entropy at the system level. However,
mere averaging or summation of local entropy fails to convey
much meaning about the type of order or behavior that is oc-



curring and, in some cases, could fail to detect self-organized
behavior [9]. In order to capture more information about
agent interactions, this work proposes to tie both micro-
level entropy and macro-level population density together to
achieve a metric of system order that can also detect periods
of stability and points of criticality.

The metric is based on Bonabeau, et al.’s threshold
function (Equation 3), introduced as a model of task division
in insect societies [21]:

Tθ(S) =
sn

sn + θn
(3)

In their equation, the probability of performing a task is
based on a response threshold, θ, related to a stimulus, s,
associated with a task, and, n, determines the steepness of
the threshold. Accordingly, if s << θ, the probability of
performing the task is almost 0, while if s >> θ, then
it is close to one [21]. This type of interplay between the
stimulus, s, and threshold, θ, is exactly the type of behavior
one needs to capture between micro and macro-level behav-
iors. Section III shows an extension that provides a metric
of macro-level order with enough sensitivity to produce a
reasonable measure of system order that indicates both times
of periodic stability and points of criticality. As the metric
is tied to population density, system order also provides
general information about the number of neighborhoods and
the distribution of the agent population across them.

Using Mnif and Müller-Schloer’s [19] generalization ap-
proach, system states are measured as the number of agents
assigned to specific neighborhoods, making state probability
calculations tractable, enabling the use of entropy measure-
ment. For this research, agents in the UAV domain con-
tinuously seek to maximize the entropy value of their local
neighborhood. The constant pursuit of entropy maximization
results in self-organized teams with shared common tasks.
In the Game of Life, local entropy values are evaluated but
do not influence agent decisions. However, coupling micro-
level entropy and population distributions to macro-level
order enables the identification of phase transitions (e.g.
group emergence, self-organization) in the system. In both
domains, local entropy scores and population distributions
across neighborhoods produce an order measurement that is
sensitive to micro-level dynamics.

III. APPROACH / METHODOLOGY

This work presents a metric that uses local entropy
measures as a part of calculating macro-level order. As
domains change, local entropy measures necessarily require
different calculations. However, the macro-level order metric
only needs the local entropy values. In other words, at
the macro-level, the metric relies on one’s definition and
implementation of local entropy. The macro-level order
metric is defined by:

τmacro =
1

|N |

|N |∑
n=1

S(n)2

S(n)2 + ∆n
2 (4)

N is the set of all neighborhoods, {n1, n2, ..., n|N |}, present
in the system. S(n) is the local entropy associated with
neighborhood, n, and ∆n is the number of agents in
that neighborhood divided by the total number of agents.
Macro-level order is measured by a summed average of
local neighborhood entropies, S(n), and the macro-level
distribution of agents, ∆n, normalized by |N |. By using
this equation, macro-level measurements carry indications
of what is happening at the micro-level. For example, if
the number of agents associated with a neighborhood, ∆n,
increases and begins surpassing S(n), macro-level order
decreases. This indicates an imbalance of agent distribution.
For example, a larger percentage of the agent population
lives in one area. If the sum of the local entropies of
all agents begins to dominate, ∆n, then macro-level order
increases towards 1. Higher values indicate the emergence
of multiple self-organized neighborhoods. Periods of equi-
librium occur when the agent population is fairly evenly
distributed (i.e. S(n) ≈ ∆n) and remains relatively constant.

As recommended by a critique on the application of
metrics across domains [9], the proposed macro-level order
metric is tested in two dynamic domains: a UAV swarm
engaged in a multi-task environment and the Game of Life.

The first domain of study consists of a swarm of UAVs en-
gaged in intelligence, surveillance and reconnaissance (ISR)
missions. When the simulation starts, all UAVs fly randomly
through a bounded grid (1,000 x 1,000 pixels). Random
targets, modeled as tasks, are added to the simulation at
random locations and times. Any target (i.e. task) within
range of a UAV sensor is added as a task to its task list.
Agents calculate their local entropy by polling neighboring
agents to find the distribution of agents across known targets.
The agent proceeds to add itself to the number of agents
assigned to task 1, and calculates its entropy using Equation
5 but instead of AT equalling the number of agents in the
entire simulation, it equals the number of agents in the
agent’s neighborhood. It continues the calculation for each
known task, selecting the target that yields the highest local
entropy.

Targets possess a limited, random, lifespan and disappear
once the time limit is exceeded. Once a target disappears,
agents must decide on a new target to fly towards, or
revert back to random flight if no other targets exists within
their sensor range. Figures 1-2 are screenshots from one
simulation run. Agents (triangles) detect three distinct targets
(circles). Guided by maximizing local entropy, they self-
organize into three teams to cover each target.

The problem facing the agents is multi-fold. One, agents
must decide what target, possibly among many, they must



Figure 1. Three targets (circles) detected by the swarm (triangles).

Figure 2. Swarm self-organizes into three teams which begin flying
towards selected targets.

engage. Additionally, all decisions are based solely on local
information. They can query agents within range about
their current actions, but do not have global information on
the location of agents outside of communication range or
targets outside of sensor range. Finally, target appearances
occur in a dynamic fashion. Agents must pursue new targets
as they are detected, leading to dynamic task switching
and coordination with other agents. However, coordination
is limited to known information. Agents do not assume
leadership roles nor do they task other agents. Each agent
decides their task independently. Also lacking is a central
controller. Once the UAV swarm is launched, all agents act
autonomously.

For an autonomous UAV swarm in a dynamic, multi-task
environment, task entropy is defined as:

S(n)uav = −
∑
i

Ai
AT

log
Ai
AT

(5)

where Ai equals the number of agents assigned to task i and
AT equals the number of agents in the simulation. Using
Equation 4, the macro-level order metric, τmacro, is:

τmacro =
1

|N |
∑
i

S(n)2uav
S(n)2uav + ( Ai

AT
)2

(6)

For the UAV domain, macro-level order is measured by the
normalized sum of task entropies, S(n), the percentage of
agents assigned to task i, Ai

AT
, divided by the total number of

tasks, |N |. With these measures, agents switching between
tasks create noticeable changes in the macro-level order in
both directions. When agents discover new tasks, macro-
level order increases, while, as tasks dissipate or agents
remove themselves from tasks, macro-level order decreases,
yielding indicators of micro-level behaviors at the macro-
level. When no tasks are available, macro-level order is
simply 0, as agents revert to random search flight patterns.

The second domain is Conway’s Game of Life. The basic
concept for the Game of Life is a 2D grid where cells are
either alive or dead. Depending on the number of neighbors
(8 adjacent cells) a cell possesses, then it will either die
from overcrowding or isolation. Dead cells may become
alive if they possess three neighbors. From these simple
rules, complex patterns of oscillation and change occur.
Some patterns, such as gliders, appear to move across the
screen while others, like the Gosper gun, continuously create
other structures. For this paper, the environment is bounded
by a 100 x 100 grid. This bounding stops gliders from
perpetuating forever, resulting in a solid block structure on
the edge. What is interesting is trying to identify periods
of oscillation, which can indicate periods of stability, or
transformation, as the case with a glider colliding with a
wall.

In the Game of Life, local entropy must be calculated
differently as agents here do not move anywhere and their
decisions are based on a set of rules. Any type of motion
associated with the Game of Life is placed upon the system
by the observer, making the appearance of ‘movement’ a
self-organized behavior that is the result of cells birthing and
dying. Schulman and Seiden [13] analyzed various statistical
properties of the Game of Life and proposed an entropy mea-
sure based on the size of a grain of cells and a proportion of
the living cells compared to the expected average (Equation:
7). In this manner, they created a probability distribution for
the living cells in the game. Instead of setting a set grain
size (e.g. 10 x 10 square), the current state of the game is
viewed as a graph, G, where every cell is a vertex, V . Each
connected subcomponent, δs, in G is treated as a grain.

S(n)life = − j
2

J2

|δs|∑
1

[
Ani
j2

log
Ani
j2

+(
j2 −Ani

j2
)log(

j2 −Ani
j2

)]

(7)

Here, Ani is the number of nodes in subcomponent, δsi, j is
the total number of alive cells, and J is the size of the grid



(e.g. 100 x 100, J = 100). The state of the game at time
step, t, is treated like a graph, G, where each community
is a connected sub-component, δs, of G. These calculations
feed into the macro-level order metric:

τmacro =
1

|δs|
∑
j

S(n)2life

S(n)2life + ( |δsi|
j )2

(8)

Instead of dividing neighborhoods up by task, neighbor-
hoods in the Game of Life are divided into connected sub-
components, δs. As with the UAV domain, changes in the
distribution of live cells changes the macro-level order of the
system. When very few sub-components exists, the system
order is low, while increases in sub-components creates
higher macro-level order. The one drawback for the metric
with respect to the Game of Life is the appearance of one
subcomponent that never changes in size (i.e. population
remains constant) but its position changes. For example, a
glider moving in continuous space would never change the
macro-level order of the system. However, in bounded space,
the glider will eventually collide with a wall and transform
into a block of four living cells, changing the macro-level
order of the system.

IV. EXPERIMENTAL ANALYSIS

A. Autonomous UAV Simulation

The first set of experiments focused on the autonomous
UAV swarm utilizing the local maximum entropy decision
process. These experiments tested two questions: one, could
maximizing local entropy yield complex, macro-level pat-
terns aimed at task accomplishment, and two, does the
macro-level order metric indicate periods of system stability
and points of criticality. For each scenario, 50 UAV agents
were assigned to the available labor pool. The population
was homogeneous with each agent possessing the same
capabilities, sensor ranges and max fuel capacity. Only initial
positions and fuel levels were randomized. In order to refuel,
an agent had to disengage from its current task and return
to base, creating imbalances in target coverage. Beginning
at time step 1,000, up to two targets appear, each at a 45
percent probability.

1) Scenario 1: In this scenario, agent sensor and commu-
nication ranges covered the entire 1,000 x 1,000 pixel grid,
enabling complete knowledge of available tasks as well as
allowing agents to coordinate with all other agents in the
simulation (see Table I). Starting at time step 1,000, targets
appear and disappear with a 45 percent chance, and at every
500 time steps thereafter. This scenario shows how agents
maximizing local entropy creates self-organized teams and
how changes in team membership (i.e. number of agents
covering a task) create noticeable macro-level disturbances.

As a plot of labor distribution over time becomes un-
wieldy beyond one or two tasks, Table II contains labor
distribution values at possible critical points (i.e. tasks

Table I
CONTROL AND INDEPENDENT VARIABLES FOR UAV SCENARIO 1. ALL
SPEEDS ARE IN PIXELS PER TIME STEP, WITH RANGES IN PIXELS. FUEL

AND LIFE METRICS DECREMENTED BY 1 AT EACH TIME STEP.

Control Independent
Refueling Center (500, 950) Fuel Level [3,000, 8,000]
Visual Radius 360 degrees Sensor Range 1,000
Velocity 0.50 Comm Range 1,000
Swarm Size 50 Target Life [500, INF]

Figure 3. Macro-level order score over time.

Table II
NUMBER OF AGENTS PER TASK (SCENARIO 1)

Time Step
1000 1500 2000 2500 3000 3500 4500

Task

1 25
2 25 25
3 25
4 44 11
5 22 16 10
6 20
7 16
8 15

NONE 50 6 17 14 9

appear or disappear). Figure 3 plots the macro-level order
of the system over time. The initial jump in order occurs
when the first two tasks appear, followed by a stable period
of task coverage. At 1,500, a drop in order occurs as one
task is removed and replaced by another. At 2,000, all tasks
disappear from the simulation. At 3,000, a spike occurs due
to a balanced distribution of task-assigned and refueling
agents, leading to a period of stability, even when a task
disappears and is replaced by another at 3,500. This occurs
as agents cycle between refueling and encountering tasks
afterwards. A noticeable jump occurs at 4,500 when a third
task appears and labor distribution remains fairly even.

These result show that maximizing local entropy does lead
to the creation of self-organized behaviors. Agent decisions
create fairly balanced teams across known system targets.
These self-organized teams create periods of stability easily
seen in the order graph. In addition, points of critical
system transition, both to higher and lower levels of system
order, are collected. Although possible transition points were
known a priori, they were dynamic where the appearance



Table III
CONTROL AND INDEPENDENT VARIABLES FOR UAV SCENARIO 2. ALL
SPEEDS ARE IN PIXELS PER TIME STEP, WITH RANGES IN PIXELS. FUEL

AND LIFE METRICS DECREMENTED BY 1 AT EACH TIME STEP.

Control Independent
Refueling Center (500, 950) Fuel Level [3,000, 8,000]
Visual Radius 360 degrees Sensor Range 500
Velocity 0.50 Comm Range 250
Swarm Size 50 Target Life [500, INF]

Figure 4. Macro-level order score over time.

Table IV
NUMBER OF AGENTS PER TASK (SCENARIO 2)

Time Step
1000 1500 2000 2280 2500 2750 3000

Task

1 24 17
2 24 16 14 12
3 17 9 18 37 36 36
4 16 19
5 8 11 2
6 3

NONE 2 11 1 2 3 9

or disappearance of targets was based upon random chance.
The drop at time step 1,500, captures a change in local agent
entropy calculations as one target disappeared as a new one
appeared. Although the resulting distribution was the same,
i.e. even distribution across two tasks, the metric captured
the dynamic change which would have been missed by pure
distribution metrics. Finally, this graph shows how the order
metric picks up on other agent behaviors, such as refueling.
Gradual decline or increase in system order due to agent
refueling is captured during regions of relative stability.

2) Scenario 2: In this scenario, agent sensor and commu-
nication ranges were limited to 500 and 250 pixels respec-
tively, increasing the likelihood of uneven task distribution in
the system (see Table III). All other settings such as possible
transition points and fuel randomization remained the same.

Table IV and Figure 4 show task distribution and macro-
order scores over time for the second scenario. As before,
when there is a fairly even distribution of labor across
multiple tasks, the macro-level order increases towards 1.
Additionally, the macro-level order drops when tasks dis-
appear and agents reassign themselves. The system reaches

Table V
CONTROL AND INDEPENDENT VARIABLES FOR UAV SCENARIO 3. ALL
SPEEDS ARE IN PIXELS PER TIME STEP, WITH RANGES IN PIXELS. FUEL

AND LIFE METRICS DECREMENTED BY 1 AT EACH TIME STEP.

Control Independent
Refueling Center (500, 950) Fuel Level [3,000, 8,000]
Visual Radius 360 degrees Sensor Range 500
Velocity 0.5 Comm Range 500
Swarm Size 50 Target Life [500, INF]

Figure 5. Macro-level order score over time.

a peak macro-level order score at 2,200, when the agents
disperse evenly across three known tasks plus an equal
number engaged in refueling. At 2,280, a sudden drop occurs
as the refueled agents discover and engage tasks in the
environment. This time step shows how sensitive the metric
is to changes in system structure. At 2,500, there is another
drop due to the loss of a task, resulting in large imbalance.
As stated earlier, this occurrence will be fairly common
when agents have restricted communication ranges. Finally,
macro-level order appears relatively stable until 3,000, when
Task 6 appears, resulting in a change in agent distribution.

Scenario 2 again highlights that agents seeking maximum
local entropy scores creates self-organized behaviors that
place order upon the system. Furthermore, the uneven distri-
bution of agents across tasks creates a more chaotic, or less
orderly system, reflected by lower order scores associated
with time steps where the population of agents was skewed
across targets. However, the order metric is still able to
identify periods of stability and points of criticality.

3) Scenario 3: In the final UAV scenario, possible target
appearance and dissolution occurred every 500 time steps
at a 65 percent probability, creating a highly dynamic
environment. All UAV sensor ranges were set to 500 pixels
(see Table V).

Table VI and Figure 5 show task distribution and macro-
order scores for the third scenario. Clear periods of stability
and points of criticality appear in Figure 5. Starting at
time step 500, the system enters into a period of relative
stability as agents equally disburse across two tasks and
random searching. A gradual decline at 1,500, occurs when
agents engaged in random search begin finding tasks in



Table VI
NUMBER OF AGENTS PER TASK (SCENARIO 3)

Time Step
500 1000 1500 2000 2500 3000 3500 4000

Task

1 17
2 17
3 17
4 17
5 26
6 21
7 46 13 21
8 17
9 15

10 18 24
11 21
12
13

NONE 16 16 3 4 5 29 11 26

the environment. A sharp drop in system order occurs at
2,000, as the system reduces from two tasks to one that
attracts a large proportion of the agent population. After
time step 2,000, increases and decreases in system order
(i.e. points of criticality) align with known checkpoints for
possible task creation or dispersement (every 500 time steps)
with periods of stability appearing between these points.
Small perturbations in system order that occur during these
stable regions are due to small numbers of agents switching
from random search or refueling to target engagement, or
vice versa, with rises associated with agents disengaging
from targets and dips associated with agents finding, and
engaging, them. In this manner, both random search and
refueling create another group structure in the simulation
that impacts system order.

B. Game of Life

The Game of Life is more stochastic than the UAV swarm
with new cells being created and destroyed at almost every
time step. Like the UAV simulation, periods of stability
occur, usually as a result of the emergence of an oscillating
pattern. Points of criticality, however, are more difficult to
detect unless the system experiences major changes in neigh-
borhood structures. For example, a glider moving across
will not change the system order. From the order metric’s
perspective, the system is in a constant or quiescent state.

1) Scenario 4 – R Pentomino: R-Pentomino was selected
for its chaotic start providing a challenge for the system
order metric as points of criticality may be obfuscated by
the noise of constant neighborhood creation and destruction
in the early time steps.

The macro-order graph (Figure 6) shows that although the
R Pentomino pattern immediately enters a highly stochastic
state, the order of the system, and number of stable neigh-
borhoods, increases during the first 200 time steps. Then
the system undergoes a long period of stability with minor
perturbations occurring as the pattern plays out. Many of
the early neighborhoods enter quiescent states with the noted
changes occurring when new neighborhoods go through their

Figure 6. Macro-level Order for R Pentomino.

lifecycle. At time step 1,130, the entire system enters a
quiescent state.

Although able to track these rapid changes in structure
and population size, the order-metric cannot pinpoint crit-
ical transition points with any amount of certainty. If one
averaged every 10 time steps into an order value, only one
period of transition, time steps 10 - 30, creates a negative
growth state (i.e. the order decreases). The rest of the time,
the system is increasing in order until about time step 200.
Arguably, every time step in the early life cycle of the R
Pentomino pattern is a critical point, only stabilizing once
larger, stable, neighborhood structures appear.

2) Scenario 5 – Glider: This work selected the glider
pattern as it thwarted one of the entropy based metrics in [9].
In this scenario, the glider pattern moves across the screen
until impacting the boundary and creating a permanent block
structure. The macro-level order metric (Figure 7) clearly
shows the boundary impact point at time step 230 and the
resulting, permanent, block pattern from 231 onwards. As
stated earlier, the order metric does not denote any difference
in the glider’s state until it comes into contact with the
boundary and undergoes a transformation in size. The metric
would have to be modified to be able to discern differences
in system state due to glider movement where the structure
composition fails to change (i.e. same number of connected
alive cells) but the positions of the alive cells change.
However, unlike the R Pentomino pattern, clear, critical
transition points exist in the glider pattern, as indicated by
the large drop in system order. The resultant shape, a four
block square, is smaller than the original structure, and thus
imposes less order on the entire system.

3) Scenario 6 – Gosper Gun: The Gosper gun is interest-
ing as it has multiple subcomponents whose transformations
continuously create gliders moving in a southwest direction
from the “gun” group. In other words, a stable pattern
continuously creates new patterns ad infinitum. Graphing
macro-level order values (Figure 8) reveals some interesting
patterns. First, the initial, stable patterns show clear oscil-
lation features as they transform states. These transforming



Figure 7. Macro-level Order for a Glider.

Figure 8. Macro-level Order for a Gosper Gun.

states then create a greater oscillation pattern as they produce
gliders. The ramp up in glider production levels reaches
its highest peak near time step 200. Afterwards, the entire
system is an oscillating pattern of glider production and
destruction as they impact the right most wall. The dips
in the oscillation pattern represent the transformation and
destruction of gliders against the right wall. A glider at time
step, n, will collide with the wall and transform into a four
block neighborhood. The glider at time step, n + 2, will
then collide with the four block neighborhood, resulting in
the ‘death’ of the cells and a drop in macro-level order. The
next glider in formation will start the pattern all over again.
Again, the order-level metric can detect changes in system
order due to structural change and track periods of stability.
However, critical points are still difficult to pinpoint in the
early stages of system macro-order growth.

V. DISCUSSION

These results highlight some interesting points. First,
agents maximizing local neighborhood entropy can impose
order on the system through self-organizing behaviors, im-
plying agents do not require global knowledge to create
an adaptable system. This observation is in-line with what
is known about decentralized natural systems. Ants and
bees have limited memories and sensors [22], [23], basing
decisions upon current environmental stimuli which includes

input from other agents. Some ants species in particular have
shown a threshold based response where an ant’s action
decision is impact not by pheromones but by the number
of times it encounters another type of ant [23]. In other
words, evolution tuned ant behaviors to reward a division
of labor but task selection is more intricate than strong
pheromone trails and may rely on some clock that tiggers
upon some set proportion. Bees engage in similar behaviors;
however, bees use more complicated signaling methods, such
as the waggle dance [22], as airborne pheromones would not
serve their purpose very well. Gifting agents in a system
full global knowledge or the ability to guesstimate millions
of future states is both contrary to observation and, as this
work shows, unnecessary to produce intelligent, collective
behavior.

Additionally, local neighborhood entropy and population
distribution produce a macro-level order metric sensitive to
micro-level dynamics incorporating agent interactions, e.g.
communication in the UAV swarm, and structure, such as
connected cells in the Game of Life. It also takes into
account temporal dynamics without having to calculate them
explicitly. For example, the jagged periods of stability in the
UAV swarm correlate to agent refueling behaviors tracked
by task distribution versus individual fuel levels or a forced
refueling function. The critical points seen in the UAV
graphs also highlight the appearance and disappearance of
tasks. Although coded to occur at certain time steps, the
macro-level order metric is sensitive to changes in the
environment resulting in observable deviations from current
agent behaviors and neighborhood structure. One could
leverage this in a detection scheme where a sliding scale
average is used. Any value that is two to three standard
deviations from the current window mean would alert an
observer to a possible change in system behavior. These
changes could be desired self-organized behaviors, such as
teams forming for target coverage, or possible malicious
acts. Using the UAV example, if the expected behavior
is the even distribution of UAVs across known tasks and
yet multiple UAVs continue to fly in random patterns or
converge to one specific target, this could indicate some type
of control failure or hijacking.

The central thread for tying micro and macro-level be-
haviors together is assigning meaning to the entropy metrics
used. Here, macro-level order indicates the formation, or dis-
solution, of agent structures and the population assigned to
them. If the macro-level order rises, teams are forming, if the
macro-level order decreases, teams are dissolving, making
the metric useful for interpretation. Additionally, reducing
system states to a generalized attribute [19] allows the use
of entropic methods without having to estimate possible
probability distributions or densities. Attribute-based entropy
methods allow for specific probability measurements.

However, limitations for this approach do exist. One, not
all systems can be easily reduced to a set of even priority



tasks with homogeneous agents or neighborhood structures.
For heterogeneous agents, one would need either separate
entropy measures or some type of hybridized approach to
estimate the global macro-order related to each type of
agent. Otherwise, some underlying micro-pattern changes
may be lost in the “noise” of a combined estimation. As
Haghnevis [24] argues, simply combining three components
with entropy values, x + y + z = 1, tells one very little as
any of the components could hold those particular values.
Furthermore, task prioritization is ignored in this method. It
is possible to give tasks a higher priority but then a threshold
parameter needs to be introduced to enforce division of
labor at some point. Without this threshold, all available
agents would flock to the high priority task, ignoring all
others, which is probably an undesirable feature. Finally, this
approach does not guarantee team-to-task optimality. The
agents select tasks based solely upon local entropy levels
without regard to current fuel status or distances, leaving
some tasks untended as the agent that selected that task
returns to refuel and in some cases, the target dissipates
before the agent arrives when another agent could have
reached it sooner.

VI. CONCLUSION AND FUTURE WORK

This paper presented a macro-level order metric that
incorporates both local entropy scores and macro-level agent
population distributions. Experimental results showed that
the macro-level order metric is able to detect both peri-
ods of stability and points of criticality in two dissimilar
domains. The estimated system order reflected the state of
self-organized behaviors in the system as well as enabling
detection of stability and critical points during the sys-
tem’s lifecycle. Although an exploratory method, the metric
showed sensitivity to micro-level agent interactions on a
scale detectable to an outside observer. In this manner, this
metric can be used for the detection of emergent patterns
of self-organization and decomposition inside a complex
system. This work showed that micro-level entropy scores
correlate to increasing and decreasing macro-level order im-
posed upon the system that align with Holland’s hierarchical
view that macro-level patterns rely on changing micro-level
patterns [4] in complex adaptive systems.

Future work will need to incorporate different entropy
measures obtained from a heterogeneous population of
agents. Additionally, ideas such as task prioritization and
response thresholds should be added to analyze the affect
those changes have upon self-organized behaviors. These
additions would necessitate the development of a modified
macro-level order metric that could account for the various
types of micro-level entropies and neighborhood distribu-
tions. The current metric would account for the overall order;
however, causation of gain and loss may be lost as different
agent interactions are rolled into one. Finally, an obvious
extension is to apply this metric to other domains. One

particular domain could be an ant-colony simulator to see if
entropy based results reflect real-world ant behaviors.
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