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Abstract—Computer network Cyber-security is a very serious
concern in many commercial, industrial, and military environ-
ments. This paper proposes a new computer network security
approach defined by self organized agent swarms (SOMAS)
which provides a novel computer network security management
framework based upon desired overall system behaviors. The
SOMAS structure evolves based upon the partially observable
Markov decision process (POMDP) formal model and the more
complex Interactive-POMDP and Decentralized-POMDP models.
Example swarm specific and network based behaviors are for-
malized and simulated. This paper illustrates through various
statistical testing techniques, the significance of this proposed
SOMAS architecture.

Index Terms—computer network security, cyberspace, agent
swarms, self-organization

I. INTRODUCTION

With the increasing number of computer network threats,

intrusions and internal anomalies, computer security has be-

come a serious concern of commercial, industrial, and military

organizations from financial activities and power system op-

erations to internet information communication and aircraft

reconnaissance and attack activities. Thus, outside intrusion

detection systems, insider covert network detection, and sys-

tem anomaly detection techniques are important security tools

in cyberspace. Many, many such systems have been proposed

using standard hierarchical management structures with iden-

tification of features employing classical pattern recognition

algorithms. Also evolved are bio-inspired approaches from

artificial immune system constructs [16] to particle swarm

approaches [9] with support vector machines [19], as well as

incorporating multi-objective aspects [8]. Various commercial

packages embed many of the associated algorithms. Neverthe-

less, such network security systems are generally quite slow

and limited when operated automatically. Humans in the loop

provide better performance due to insight and intelligence.

The goal is to provide better effective and efficient network

security real-time performance using a swarm of autonomous

self organized agents that evolve a non-hierarchical entangled

cyberspace security management structure. In particular, this

paper defines a self-organized multi-agent swarm (SOMAS)

system with a limited number of desired behaviors. However,

these particular scenarios or behaviors only demonstrate SO-

MAS feasibility and are not comprehensive of the system’s

capability. SOMAS can be applied to a wide variety of

other network security problems, such as intrusion detection,

network defense, hiding high value targets, etc. as well as

issues not only restricted to network defense.

The paper discusses current computer network threats in

Section II. Section III presents the Self Organized Multi Agent

Swarms (SOMAS) for decentralized security with its design

developed in Section IV. The formalism of the agent swarm

behavior is discussed in Section V. The experimental testing

of the SOMAS concept is presented in Section VII with testing

and analysis to follow in Section VIII. Finally, a summary of

the investigation along with avenues of further research are

discussed in Section IX.

II. CURRENT NETWORK THREATS DEFENSE

Network security threats run the gambit from internal to

external attacks. Network defense of these attacks can be

structured from a centralized or decentralized framework. All

these elements of network security are addressed.

A. Nature of Threat

Web Based Insider Attacks: According to the multitude

of internet analysis, we are fighting a losing battle against

those who create malware. Although, for example, the external

worm threat is currently under control, the computer virus

signature types have grown to astronomical numbers. While

any computer that is hooked up to the internet is guaranteed

to be attacked within 20 minutes, most attacks are ineffective.

Consequently, the malware contemporary effort has moved to

the client side, embedding exploits in web pages and emails.

The implication is that the threat has moved inside the

network. Thus, border control is no longer adequate. Intrusion

detection must look both at network traffic and host activity.

Any kind of defensive system must be able to handle an in-

ternal threat by identifying it, quarantining it, and eliminating

the malicious entities involved.

Denial of Service Attacks: Even though the threat of external

infiltration by worms and viruses is low, denial of service

attacks are still a very real problem, as recent events in Estonia

show. The threat is heightened when the attacking computers

can be within as well as outside the targeted network, brought

about by internal intrusion.



Information Exploitation and Corruption: The degradation

of network performance results in the corruption and destruc-

tion of information. Malicious agents also exploit and remove

confidential information from the networks.

Counter Defense: Finally, the defenders of all the informa-

tion are the indirect, yet primary, target of malicious agents;

since defense keeps attackers from desired information.

B. Defensive Network Environment Designs

Secure Middleware: To defend against a network attack, a

comprehensive solution is needed, allowing security to quickly

be pushed out to all nodes and rapidly report back incidents.

This security solution is a form of middleware, a distributed

computing system that all users of the network interact. The

Air Force is developing secure middleware called Cybercraft

[15]. While the exact implementation design is in develop-

ment, it is based on a container model. Each node receives

and deploys software “payloads” governed by a policy.

Efficiency and Flexibility of Distributed Systems: Stytz, et al

[26], argue military networks require a distributed intelligent

agent framework for security to avoid the weaknesses of

centralized control structures, i.e. lack of scalability, single

points of failure, fragility. Servat and Drogoul [24] predict

future networks are characterized by a ubiquity of mobile

end devices, even nanotechnology. Such large, heterogeneous

environments make centralized control extremely difficult and

costly, further implying that a MAS is necessary for system

control.

In [12] and [23], the authors argue a MAS is given a greater

range of ability by mobilizing software agents. Still, there is a

danger of devolving into chaos; and mobility adds new degrees

of freedom, threatening to produce unstable systems.

III. EMPIRICAL AND THEORETICAL BASIS OF SELF

ORGANIZATION, AND APPLICATION TO DECENTRALIZED

CONTROL

The usefulness of SO is demonstrated and applied to the

problem of decentralizing control in a MAS.

The approach to creating mobile, decentralized agent

swarms lies in the much explored, but not fully understood,

subject of self organization (SO). SO consists of global prop-

erties, such as goals and patterns, emerging from autonomous,

local interactions, observations, and knowledge of agents in a

MAS. Many natural ecosystems exhibit SO, such as termite

mounds and bacteria cultures, and SO is prevalent throughout

the natural world [5].

These levels are called emergent, since they are both com-

pletely composed and constructed by a simpler sub-system,

yet are not reducible to the subsystem [4]. For example,

chemical laws operate based on physical laws, but physical

laws cannot generate chemical laws, which is why chemistry

and physics are distinct fields. The formal irreducibility of

emergent levels is suggested by Gödel’s incompleteness the-

orem [4]. This evidence demonstrates the terms “emergence”

and “self-organization” refer to objective phenomena and are

useful topics of study and application, instead of subjective

phenomena caused by limitations of the human mind.

SO is useful for security because a self organized MAS

can respond to dynamic environments without centralized

control and develop continuously changing tangled hierarchies.

Tangled hierarchies are hierarchies where different levels of

control mutually influence each other in a multi-directional

feedback loop. Tangled hierarchies circumvent the problems

of normal hierarchies while providing systemic control.

In order to create a MAS that exhibits SO, it is necessary to

rigorously identify when SO is occurring. The approach taken

by Nagpal [20] is to define a set of rules that produce SO

behavior. Another approach is to create a general SO metric,

as Shalizi, et al [25] have done. This metric algorithmically

highlights the sections that humans visually identify as orga-

nized in a spatiotemporal network simulation. It is considered

consistent with information theory [22]. The metric is usable

as an objective function in solution space searches. The wide

variety of rules that can be used to construct the swarm is a

benefit of this top-down approach, as opposed to the limited

rule set required by the bottom up design of SO. On the other

hand, the search space to optimize the SO objective is very

large, and the bottom up approach can generate a SO swarm

more quickly. The two approaches are not mutually exclusive

and both are more effective when combined.

In this paper, self organization is only identified visually.

Later work uses the self organization metric to quantitatively

analyze the effectiveness of self organization.

IV. SELF ORGANIZED MULTI AGENT SWARM DESIGN

In the following design of Self Organized Multi Agent

Swarms (SOMAS) [13], desired system behaviors, major

assumptions and risks are discussed. The general approach

to generating the SOMAS is described and a formal model is

selected to represent the individual agents and their interaction

with each other as well as the generic computer network

environment. The general objectives and the model develop-

ment complexity is discussed as associated with finding each

individual agent policy and an overall policy or process to

achieve the desired system behaviors.

Given the overall goal from the Introduction, the generic

SOMAS behavioral objectives addressed in this paper are to

minimize the activity on a network node, that is, minimizing

agent movement, creation, and deletion on a node. And, to

identify the vital network nodes, that is those nodes that

can cause the largest network degradation if removed. Such

objectives and constraints require mathematical optimization

formulations in order to develop a computational model.

Constraints considered are the use of a container model, the

specified agent sensors, the given set of agent rules, and a

static network topology.

The implementation model used for the agents simplifies

much of the complexity of a real world implementation. The

agents are assumed to be implemented within a software

or hardware container. This assumption is valid if they are

to be deployed in the Cybercraft environment, described in

section II. Container models significantly simplifies decentral-

ized swarm implementation, abstracting agents from hardware

and operating system details. It is assumed containers use a



common interface to provide agents with information about

the hosts they are on. Agents need only know the interface to

access the information they need and interact with their host

through their container. The use of the container model implies

the agents do not need specialized mechanisms for interacting

with their host. Additionally, communication is simplified to

direct delivery between nodes, i.e. an agent is merely moved

from one container’s data structure and placed in another’s

data structure.

A major risk is the nature of solutions generated by approx-

imate SOMAS generation. Approximation means the solution

is imperfection and the SOMAS does not react appropriately

to certain events and environments. The second risk is the

degree of self organization the swarms exhibit. Lack of self

organization results in trivial or chaotic swarms, both of which

are ineffective. Additionally, the chaotic swarm is dangerous.

Finally, the complexity and seriousness of the problem may

mean that the SOMAS approach does not provide the neces-

sary gain for the risk involved.

Two approaches are used for the generation and adaptation

of SOMAS: off-line and on-line. The off-Line approach makes

use of simulations and a DEC-POMDP model to generate

agents. This model is chosen because the global network

state can be observed for evaluating the global fitness of

the swarm during off-line generation. On the other hand, the

on-line approach uses data from the actual network and an

I-POMDP model to generate agents. The I-POMDP model

is chosen because it presupposes individual agents are only

capable of local observations of other agents in the swarm.

Both approaches make use of evolutionary operators. The off-

line production uses an explicit evolutionary algorithm and the

on-line production’s evolutionary algorithm is implicit in the

combination of the SOMAS and the environment.

Various Markov decision process (MDP) models are ap-

propriate for modeling the off-line and on-line agent swarms,

because the agent schema outlined by Russel and Norvig in

AIMA [21] can be represented with an MDP. The AIMA agent

schema consists of sensors, actuators, and state. These can be

encompassed in the elements of MDP models, which are at

least state and an action-state transition function, but can also

include elements such as observation and reward.

Since most agent swarms do not have full observation

of their environment, a partially observable Markov decision

process (POMDP) is appropriate. The elements of the AIMA

agent schema correspond to the POMDP < S,A, T,O,R >
tuple in this way: S is the agent’s state, A are the agent’s

actuators, O are the agent’s observations, and R are the

rewards the agent can receive for its utility function. T is not

found explicitly in the AIMA agent schema. It represents how

agents’ actions change their state.

Along with the basic schema in [21], AIMA also de-

scribes a taxonomy of agents, ranging from purely reactive

agents to decision theoretic agents. The mapping parameters

T and Ω in the interactive POMDP (I-POMDP) [10] tuple

< ISi, A, Ti,Ωi, Oi, Ri > are the symbolic equivalent of

cognitive capabilities in agents that make decisions based on

their knowledge of other agents. R in the decentralized (DEC-

POMDP) [2] is a group reward, allowing the utility for an

Type Scale S O A T Ω R

MDP L L N/a L L L L
DEC-MDP G L N/a L L L G
POMDP L L L L L L L
DEC-POMDP G G L L R L G
I-POMDP R R R L R R R
R-MTDP G R L R R L G

TABLE I
TAXONOMY OF COMMONLY USED MDP MODELS. L = LOCAL, R =

REGIONAL, G = GLOBAL

entire swarm to be modeled. Table I compares the agent scale

characteristics of common MDP models and their respective

elements. Regional can comprehend both local and global.

Both are extreme points of regionality.

The DEC-POMDP and I-POMDP models are chosen over

the other MDP models because they encompass most of the

others. The exception to this is that they do not group actions

into roles like the R-MTDP model. As well as encompass-

ing the other models, the DEC-POMDP is chosen because

it allows group rewards, which are useful for the off-line

development of the swarm from a global perspective. The I-

POMDP models the agents interacting with each other and

directly changing each others’ parameters, and thus describes

the agent observable on-line behavior of the swarm.

V. AGENT SWARM BEHAVIOR FORMALISM

In order to properly develop the SOMAS, a formal set of

behavior definitions are required with associated agent rules

using first order predicate logic well formed formulæ. Formal

overall behavioral goals and specific individual agent goals

need to be addressed for DEC-POMDP processing.

A. Agent Rules

Each agent has a set of decision rules that it uses to

determine whether to execute a given actuator based on its

observation of its state and environment.

A basic weighted discriminant function is used in this

application, equations (1) and (2).

convert( ~data) > 0 → actuator.execute (1)

convertweighted( ~data) = mean( ~weightsactuator.× ~data) (2)

~data is statically sized in this rule, and ~weightsactuator is

a particular set of vector weights for the given actuator in the

range (-1, 1). .× is element-wise matrix multiplication.
~data is a vector composed of state and environment obser-

vations, a random variable, and a set of fixed parameters.

Each agent has the same set of 4 sensors.

• Fitness value of agent

• Fitness values of all agents on node

• Fitness values of all agents’ chromosomes on the node

• Fitness values of neighboring nodes one edge away

Each agent has the same set of 6 actuators/rules. Many

actuators have dynamic parameter values provided by each

agent’s chromosome through a genetic algorithm process.



• Change location

• Change fitness value of agent

• Mutate one of the agent’s chromosomes

• Crossover one of the agent’s chromosomes with a local

agent

• Create local agent (also marks the node)

• Delete local agent

The fitness value of a node is the sum of all the fitness

values of the agents on the node; not global, not local, but

regional.

B. Formal SOMAS Objectives

Since there is often a tradeoff between objectives, it is

usually impossible to find a single solution that minimizes

each objective. In operations research, there are two main

techniques for dealing with multi-objective optimization. The

objectives are either reduced to a single objective, or solutions

are compared based on their Pareto dominance. [6] Since the

latter technique is more general, it is used to rank the solutions

into Pareto equivalent sets, as detailed in equation (3).

PFTRUE = ∀f(argminP
s∈S(f(s)) : f ∈ F) (3)

The best set is called the PFTRUE , since it is the Pareto

dominant set out of all the solutions, also known as the Pareto

front. In the case of a search for an approximate solution the

solution set is PFKNOWN since it is the known best set, but

not necessarily the optimal set. argminP is an argmin function

that uses a Pareto dominance ranking metric to find the Pareto

dominant set of solutions.

Non Intrusive:

This objective is to minimize agent activity on a node, which

entails minimizing agent movement, creation, and deletion.

Two objective functions measure this activity. Both functions

are of the form of equation (4). At in the first function is the

set of agents created during each simulation step, per formula

(5). At in the second function is the set of agent movements

between nodes during each simulation step, per formula (6).

∑

t∈Tt>1

|At| (4)

∀a{a ∈ At : a ∈ st ∧ a /∈ st−1} (5)

∀a{a ∈ At : a ∈ nt ∧ a /∈ nt−1 ∧ a ∈ st−1} (6)

Tt>1 is the set of all simulation time steps, not including

the initial step. nt is a given node during time step t. st is the

simulation state during time step t.
Vital Node Identification:

Identifying the vital nodes in a network is the scenario

specific goal of SOMAS. As mentioned in the introduction,

this scenario is meant to show the feasibility of using a

SOMAS for network security. It should not be considered

the only SOMAS security behavior, since multi agent systems

are used to solve many security problems. A broad range of

behaviors are covered in future work.

The vital node set is the minimal set of nodes in a network

that causes the greatest network degradation when removed.

Finding the vital nodes and edges in a network is an NP-Hard

problem [1]. The difficulty of the problem is increased by the

fact that the problem information is only partially observed,

each agent only has a partial view of the whole network.

It is important to design networks so they cannot be easily

damaged by resources being deactivated. Identifying the vital

nodes is relevant for any security professional concerned with

robust network topologies and resource allocation.

To simplify the objective evaluation, the network is con-

structed such that a specified node has a significantly greater

degree than all other nodes, making it the vital node. Mea-

suring swarm effectiveness consists of counting the number

of agents that correctly identify the vital node, as detailed by

equation (7).

|Mi|+ 1

|Mc|+ |Mi|+ 1

∀Mc∀Mi{Mc,Mi ∈ S}

(7)

S is the set of all simulation states. Mc is the set of marks

on the correct node and Mi is the set of incorrect marks. The

top and bottom are offset by 1 so the result is not ambiguous

( 0

0
) if both sets are empty.

VI. ALGORITHM DOMAIN

The search algorithm, various operator, and associated pa-

rameter values must be defined for multi objective compu-

tational execution [6]. Also, a testing environment must be

selected. These issues are addressed in this section.

Since finding a DEC-POMDP policy is NP-Complete [2]

and finding an I-POMDP policy is harder or impossible due

to its recursive nature [11], it is not tractable/possible to find an

exact solution in most I-POMDP and DEC-POMDP problem

domains. The SOMAS problem domain is not simpler. It is

a planning problem of determining the right agent actions

to perform at the right place at the right time. Solving the

planning problem is NEXP-Complete [21]. In such difficult

problems, it is better to look for a good local optima than the

optimal solution.

The field of metaheuristics provides numerous general

approximation search techniques, such as simulated anneal-

ing, tabu search, and evolutionary algorithms [17]. Genetic

algorithms (GA) are most suited for the SOMAS problem

domain because they search the global solution space and

an effective swarm needs to incorporate multiple kinds of

behaviors. The algorithm used for this paper employs the

standard GA operators of uniform crossover and mutation, and

selects the operands with the IBEA multi-objective selection

algorithm [28]. Figure 1 shows how the genotype is translated

to the phenotype in the GA.

A. Search Heuristics

According to the No Free Lunch Theorem (NFLT) [27], one

search technique is just as preferable to another without spe-

cialized domain knowledge. However, the NFLT only applies

across all problem spaces or to particular domains exhibiting

certain characteristics. The vast majority of countable problem



Fig. 1. Translating the genotype to the phenotype

domains (classes of functions) do not have the conditions

necessary for the NFLT to hold [14], but many other problem

domains have these conditions, such as uncountable problem

domains. Engineers need to know the problem domain charac-

teristics, how to encode its specialized knowledge, and how to

define metrics and measures to evaluated system performance.

One problem domain metric is intentional development.

Intentional development creates order whereas lack of inten-

tion results in disorder. This is seen when comparing human

artifacts to natural artifacts [7]. A simple demonstration is to

view the amount of order in New York City compared with

the amount of order in the Amazon rain forest. Order and

disorder can be characterized by the entropy of the system,

and consequently the amount of information in the system. A

system with high information exhibits a very concise coding

whereas a system with low information exhibits a very large

coding, as implied by Shannon’s theory of information. The

amount of order or disorder in the system, in turn, helps

guide the amount of local and global information to use in the

search. Since any existing system is produced either through

a mechanical and stochastic process, or through intention

(human or animal), a very general, yet potentially very useful,

heuristic is hypothetically possible to guide the information or

specialized knowledge design of the SOMAS for a particular

problem domain. If this hypothesis is true, then the NFLT does

not hold for algorithms operating in many existing systems.

B. Operators and parameter selection for MOEA

Multiple objectives in MOPs do not generally map in a

regular pattern to the decision space. Additionally, the curse

of dimensionality implies the objective vector mean lies in a

radius around the vector composed of the mean of each objec-

tive, and the radius increases with the number of objectives.

Therefore, it is useful for a MOEA to be more exploratory as

the number of objectives increase.

The implemented mutation operator looks at each bit in

the chromosome and flips it according to a probability. The

probability of mutation is set to 1.0 and the probability that

a particular allele is mutated is set to 0.1. Consequently, the

likelihood that at least one allele is mutated is 1−0.9α, where

α is the number of alleles in the chromosome. Since mutation

in a GA is traditionally set to a very low value, such as around

0.01, this parameter setting is comparatively very high for a

chromosome of significant length.

On the other hand, the crossover probability is very low

in regard to normal GA settings, due to the characteristic

of MOPs where the good building blocks tend to have high

epistasis and occur rarely [6]. The crossover operator is a

uniform crossover. The probability the crossover operator is

used is set to 1.0 and the probability of crossover is 0.1

for each allele. The likelihood at least one allele is crossed

over is the same as the likelihood of at least one allele

mutation. Traditional GAs tend to use multi point crossover,

instead of uniform crossover. So, while the likelihood of using

the crossover operator is very high, the likelihood the same

number of alleles is crossed over as in a traditional GA is quite

low. Thus, the likelihood a building block of high epistasis is

disrupted is reduced.

VII. DESIGN OF EXPERIMENTS

In the design of experiments, the test objectives must be

specified, followed by a methodology and plan for accom-

plishing the objectives.

A. Test objectives

Best algorithm: There are a wide variety of MOEA al-

gorithms in existence, and they each have their own char-

acteristics which make them suited for particular problem

domains. As a result, it is important to determine what the best

algorithms are for finding solutions on or near the different

regions of the PFTRUE for the SOMAS problem domain.

This is possible despite the No Free Lunch theorem (NFLT)

since the NFLT only applies to all problem domains as a whole

and only a small portion of individual problem domains, refer

to section V.

Effective Self Organized Behavior: The general goal be-

hind the SOMAS approach is to generate swarms that can

accomplish global objectives with only local information and

interaction, section III. The behavior in this case is to identify

the vital nodes in the network, section V. Additionally, the

behavior should be self organized.

B. Test Methodology

Algorithm Evaluation: In evaluating MOEA effectiveness,

various metrics must be appropriately selected with the result-

ing data statistically analyzed. The PISA testing framework

[3] is used because of its extended utility for various MOEAs.

The two algorithms which are tested against each other are

NSGA2 and SPEA2. They are run on the 3 different problem

sizes: pedagogical, local, and campus. 30 simulation runs are

conducted for each chromosome.

The MOEAs are run 4 times each for the two smaller size

networks, and 2 times for the largest network, resulting in 18

runs altogether. Table III shows the settings for µ and λ.

According to the Central Limit Theorem and empirical

evidence, 25 experiments suffice to produce significant results



[18]. Thus, each chromosome is evaluated on 30 randomly

initialized networks to generate its objective values. The extra

evaluations are used to improve the significance.

In order to determine the comparative effectiveness of

MOEAs, their respective PFKNOWN surfaces must be com-

pared. The metric for this comparison should be Pareto com-

patible, although there may exist a good reason for Pareto

non-compatibility [6]. If the metric is not Pareto compatible,

then it may rank a dominated front higher than the domi-

nating front. Suggested MOEA metrics include error ration,

hyperarea or hypervolume ratio, epsilon indicator along with

Pareto attainment functions [6]. The Pareto compatible metric

selected is hypervolume ratio, since it is easily computable.

To test comparisons between algorithms, it is important to

first determine whether the results follow the normal distribu-

tion. If they do, then a p-test can be used. If the results do

not, then a non parametric test must be used. In this paper,

since the distribution is not known, non parametric tests are

used. The tests are the Fisher independent test and the Mann-

Whit test, which are both non-parametric. The statistics are

calculated by comparing the hypervolumes generated by the

PFKNOWN of each algorithm.

Behavior Evaluation: In order for the behavior to be effec-

tive, it must perform statistically better than random behavior.

However, even if the behavior is effective, that does not

necessarily mean it is self organized. This paper does not

use the self organization metric discussed in section III. The

metric is used in later work. Instead, a visual analysis of self

organization is used. If the swarm exhibits a organized, global

behavior that requires the local interactions of the swarm’s

agents, then the behavior is self organized according to the

definition in section III.

To determine the statistical significance of the behavior’s

effectiveness, the upper bound on the random behavior is 30

trials to mark the correct node, where each trial only consists

of one mark attempt. Since each chromosome is evaluated on

30 randomly initialized simulations, the number of trials is

set to 30. The number of mark attempts per trial is set to 1

because if the number of mark attempts per trial is increased,

the likelihood of getting the same percentage of correct marks

averaged over all the trials decreases. Thus, 1 mark attempt per

trial is the lowest possible number of attempts that provides the

greatest likelihood of success. The probability of the swarm

selecting a particular node is 1

|N | where N is the set of nodes.

The percentage of correctly identified nodes averaged across

the simulation runs is compared to likelihood of the same

percentage being produced using a binomial distribution with

the random behavior’s parameter settings. If the likelihood

is below 0.01, then the swarm’s effectiveness is considered

statistically significant.

VIII. RESULTS AND ANALYSIS

To evaluate SOMAS performance, analysis of approximate

or known Pareto fronts is addressed.

A. Algorithm Effectiveness

Even though the p-values in the statistics do not fall

below the significance a-value af 0.05, it is important to see
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a difference does exist. The lack of statistically significant

results is possibly due to the fact only 4 samples are compared

against each other, instead of the recommended 20. For the

small network, NSGA2 creates the dominant PFKNOWN ,

while SPEA2 outperforms NSGA2 for the larger networks.

This is in-line with the algorithms’ known behavior. SPEA2

is observed to converge more effectively than NSGA2.

The knowledge of the algorithms’ comparative effectiveness

depending on problem parameters fulfills the first test objec-

tive, section VII-A, to an extent.



Graph Size Test Type Result

25 node Fisher SPEA2 > NSGA2 w/ p-value of 0.500
Independent NSGA2 > SPEA2 w/ p-value < 0.500

25 node Mann-Whit SPEA2 > NSGA2 w/ p-value of 0.841
NSGA2 > SPEA2 w/ p-value of 0.159

50 node Fisher SPEA2 > NSGA2 w/ p-value < 0.500
Independent NSGA2 > SPEA2 w/ p-value of 0.501

50 node Mann-Whit SPEA2 > NSGA2 w/ p-value of 0.159
NSGA2 > SPEA2 w/ p-value of 0.841

100 node Fisher SPEA2 > NSGA2 w/ p-value < 0.500
Independent NSGA2 > SPEA2 w/ p-value of 0.501

100 node Mann-Whit SPEA2 > NSGA2 w/ p-value of 0.159
NSGA2 > SPEA2 w/ p-value of 0.841

TABLE II
HYPOTHESIS TESTS OF ALGORITHM DOMINANCE FOR GRAPHS.

Type Nodes Pop Gens Correct Prob

25 100 8 42.0% 4.01e-11
25 10 8 33.8% 1.39e-07

NSGA2 50 100 5 25.5% 9.60e-08
50 10 8 21.3% 2.34e-05
100 100 8 19.3% 4.66e-07

25 100 8 40.5% 6.95e-10
25 10 8 33.3% 1.39e-07

SPEA2 50 100 5 29.0% 4.79e-09
50 10 8 25.1% 9.60e-08
100 100 8 23.7% 1.61e-08

TABLE III
BEST RESULTS FOUND WITH GIVEN PARAMETERS

B. Behavior Effectiveness

As shown in table III, all variations of the experiment

produce a behavior that is statistically more effective than

the random behavior. Therefore, SOMAS production produces

significant solutions in the problem domain, fulfilling the

effectiveness criterion of the second test objective, section

VII-A.

C. Behavior Self Organization

1) Human Engineered Chromosome: Comparing a human

engineered chromosome to sampled evolved chromosomes

demonstrates a number of interesting differences. The human

engineered solution is very active and many agents move, are

created, and deleted. The general trend, when the solution

works, is for the agents to stabilize so there is a group of

very mobile agents concentrated at the bottleneck, while the

rest of the nodes primarily contain stationary agents.

2) Observation Self Organized Behavior in Evolved Chro-

mosomes: On the other hand, the two sampled evolved so-

lutions are created from agents that tend to have extremely

high parameters. The first solution is made from a single very

mobile agent that has a medium likelihood of creating an

agent, and a stationary agent that is very likely to delete other

agents. The second solution is similar to the first, except the

mobile agent is also very likely to create new agents.

Both evolved solutions have a comparatively very small

amount of network activity, and in some cases the agents are

completely removed from the network. Generally, there is a

brief period of high activity, where agents rapidly visit the

whole network, followed by a very rapid decline in activity

until there are almost no agents left. The second chromosome

has an interesting additional feature where the network in some

cases stabilize with a single set of agents constantly creating

and deleting each other on a single node, which in turn is often

the vital node. This is a very ideal result, although it does not

happen consistent. However, it is interesting to see that such

a solution can be evolved with a very small number of rules,

simple parameters, and simple observations.

Since this behavior is achieved by the agents without the

agents knowing the global utility of their actions or the global

swarm organization, and the behavior is fairly stable, the

behavior is self organized. This result fulfills the self orga-

nization criterion of the second test objective, section VII-A.

The behavior entirely accomplished by the dual level feedback

mechanism of agent creation and deletion, and evolutionary

operators; as well as the local utility function of going to the

node with the highest pheromone concentration.

D. Pareto Front Analysis

As can be seen in the plots of the approximate Pareto front,

the selection algorithms are not able to find a good spread of

solutions on the two larger networks. The solutions tend to

be grouped in the center. This lack of exploration is directly

related to the problem domain and represents the difficulty in

minimizing each objective independently from the others. The

number of agents created and the number of agent changes on

a node are very closely tied, but not identical. The number of

agent changes is limited by the number of agents created, but

the converse does not apply. That is why the agent creation

axis is better explored than the agent change axis. On the other

hand, the incorrect ID axis is largely independent of the other

two since it is scale independent, although a small amount of

activity is necessary to produce a value.

It is noteworthy that the final PFKNOWN does not extend

significantly far beyond the original PFKNOWN , although

it comprehends more of the Pareto front. This observation

suggests the solutions are very close, if not on, PFTRUE .

Assuming the PFKNOWN is close to optimal, then some

optimal solutions are quite easy to find, since the PFKNOWN

for the algorithms’ first generations is produced from fairly

small populations.

IX. CONCLUSION

In this paper, a self organized multi agent swarm approach

to network security is proposed. Its derivation comes from

considerations of self organization and mathematical Markov

decision models. A metric for self organized behavior is

recommended, as well as a heuristic. The desired behaviors

of the swarm are formalized and SOMAS is statistically

tested on a preliminary benchmark. The tests demonstrate

the effectiveness of particular algorithms based on problem

parameters. The SOMAS approach [13], at least in this fairly

simple problem domain, has shown itself to be effective

at accomplishing a given objective, as shown by table III.

Additionally, evolved behaviors have demonstrated self orga-

nized behavior, when individual chromosomes are visualized,

although their reliability needs to be improved.



Yet, despite the limited success, many SOMAS developmen-

tal aspects can be improved in the approach, methodology, and

experimental design and evaluation. More extensive testing

is required of different agent rules, scenarios, and scenario

sizes. Additionally, the self organization metric should be

used to determine the influence of self organization on the

swarm’s effectiveness and efficiency. The intentional develop-

ment heuristic also needs to be formalized and tested.

The feasibility of the SOMAS approach opens many

promising areas of research. As mentioned in the introduction,

our electronic world is faced with ever mounting complexity

of events and structures, complexity for which our traditional

hierarchical approaches are not well suited. However, natural

organisms handle much greater complexity on an everyday

basis, without a centralized hierarchy. Armed with a means of

rigorously quantifying self organization, the SOMAS archi-

tecture shows promise as being able to solve these problems,

with intriguing implications.
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