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Abstract

Current technologies for computer network and
host defense do not provide suitable information to
support strategic and tactical decision making pro-
cesses. Although pattern-based malware detection is
an active research area, the additional context of
the type of malware can improve cyber situational
awareness. This additional context is an indicator
of threat capability thus allowing organizations to
assess information losses and focus response actions
appropriately. Malware Type Recognition (MaTR) is
a research initiative extending detection technologies
to provide the additional context of malware types
using only static heuristics. Test results with MaTR
demonstrate over a 99% accurate detection rate and
59% test accuracy in malware typing.
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1. INTRODUCTION

Classic signature-based antivirus systems are effec-
tive at stopping global computer virus outbreaks, but
are notoriously simple to avoid [1] for advanced local
threats. Automated detection of such threats requires
generic pattern recognition systems that determine pro-
gram functionality using features common to dynamic
or static analysis. Dynamic analysis is a behavior-
based approach requiring runtime observation of sam-
ples in a protected environment. Static analysis is

generally more efficient at detecting malware, because
it uses high-level information, such as n-grams [2]–
[8], strings [9] and metadata (data describing program
structure and data) [9], [10].

Although pattern-based malware detection is ex-
tremely valuable, it provides no real threat context in
the discovery of “malware” on a system with access
to sensitive information. The additional context of
the type of malware, such as backdoor, keylogger or
adware, elevates the cyber situational awareness to an
actionable level. The presence of a backdoor indicates
that a competitor may have exfiltrated company secrets,
while a keylogger may indicate a compromise of user
credentials. Both of these discoveries require immedi-
ate, unique responses while the response to adware is
likely trivial. Without the context of malware type, the
information provided is not actionable.

Determining the type of new malware is difficult
with current capabilities. Commercial products ship
with low sensitivity heuristic scanners to avoid false
positives. Customers can quickly lose confidence with
highly sensitive scanners, not to mention they may
expect the product to have the capability to “repair”
any discoveries. None of the automated static anal-
ysis research [2]–[10] pursues the additional context
of malware type. Additionally, dynamic analysis is
orders of magnitude slower than static techniques and
assumes the program reveals its true function within a
short runtime duration.

Improving cyber situational awareness is the central
objective of this research effort called Malware Type
Recognition (MaTR, “matter”). Increasing awareness
leads to improved mission assurance, because it pro-
vides leadership with the appropriate level of infor-



mation for risk assessment and management. Recent
static analysis research focuses exclusively on detec-
tion without investigating malware types. The resulting
poor situational awareness forces leadership to make
decisions without understanding associated risks.

MaTR extends [11] with additional malware types
as well as detection to provide more threat context by
using only static heuristics. MaTR examines the appli-
cation of classic pattern recognition techniques used in
static detection to determine types of malware while
preserving high detection rates. MaTR achieves an
apparent typing test accuracy rate of 59% across seven
major malware classes, while maintaining a greater
than 99% detection rate. These indicators can provide a
significant improvement in cyber situational awareness
over current methodology. The additional context can
also help in the prioritization of analyst backlogs or
more aggresive dynamic analysis techniques.

2. RELATED WORK

The most accurate static methods of automated
malware detection come from n-gram research. Slicing
a program into byte sequences of n bytes generates
n-grams [2]. Non-malicious software and malware
contain different frequencies of the byte sequences
and the most unique become salient features for the
classifier models.

IBM researchers Kephart and Arnold [2] are the
pioneers in n-gram research as they define signatures
automatically for new variants of known malware
based on lowest likelihood to generate false positives
for boot sector viruses. Tesauro et al [3] extend this
work using neural networks with backpropagation and
boosting with a voting system and incorporating cost
function adjustments to reduce false positives. Arnold
and Tesauro [4] describes the “cover” concept of
finding n-grams present in all malware exemplars as
both a feature and sample selection method. Szor states
that the accuracy and false positive rate of this research
were acceptable for Symantec to incorporate the IBM
method into an early version of their commercial
antivirus product [12].

Stolfo et al [7], [8] use n-grams to detect malware in
document files and their implementation demonstrates
superior detection performance over commercial an-
tivirus scanners. Another distinction between this work
and the IBM research is the use of low number byte
character sequences (1- and 2-grams). Prediction uses
k-means clustering with file type centroids, which the
authors refer to as “fileprints”. Experiments show that
commercial antivirus software often fails to detect

popular malware (even without additional obfuscation)
when embedded in various places in document files.

Abou-Assaleh et al uses Common N -Gram analysis
to classify malware [5]. The authors examine character
n-grams found in executables in order to capture
features associated with the author and tools used to
write or compile the code. The authors make their
observations on a small sample size of 25 and 40
samples of malicious and benign code respectively.
The authors show that the character n-gram technique
produced 100 percent accuracy on training data and 98
percent accuracy on test data.

Kolter and Maloof examine the results of several
classifiers on malware detection via n-grams [6]. Tech-
niques they test include naive Bayes, support vec-
tor machine, decision trees and boosted variants of
each. In their experiments, they evaluate the classifier
performance by computing the area under a receiver
operating characteristic (ROC) curve. Their boosted
decision tree model achieved the best accuracy, an area
under the ROC curve of 0.996.

Using feature vectors of various information, includ-
ing metadata, byte sequences and strings, as inputs,
Schultz et al [9] test a variety of classifiers using 5-
fold cross validation on unpacked malware samples.
Their classifiers include inductive rule learning, multi-
naive Bayes and naive Bayes classifiers. Although the
multi-naive Bayes classifier with string inputs has the
highest detection rate, the naive Bayes classifier with
string inputs is within 1% with 99.43% and the best
false positive rate of all tests (3.80%).

Treadwell and Zhou [10] use anomalies in the
program header indicating the presence of packing as
factors in a weighted risk assessment. They compute
risk scores detecting malware that exceeds various
threshold values. In the most sensitive tests, their
model achieves a detection accuracy of 95.3% with a
false positive rate of 3.872% on 144 malware samples.

All of these research efforts achieve high detection
accuracies, but none examine malware typing. MaTR
uses decision trees on hybrid static heuristic features
to extend these techniques to malware typing while si-
multaneously demonstrating high detection rates. This
additional context is a strong indicator of functional-
ity, because the antivirus industry informally adopts
naming and typing conventions from the Computer
Antivirus Researcher’s Organization (CARO) [13].

2.1. CARO Naming Standard

In order to establish naming standards and sim-
plify sharing of information in the malware research
community, CARO defines a recommended industry



naming standard for discovered malware. The most re-
cent naming standard specifies several malware types,
including (in decreasing order of prioritization) virus,
dropper, Trojan, PWS (password stealer, a.k.a. keylog-
ger) and backdoor [13]. Although antivirus software
vendors are not obligated to follow the CARO naming
standard, it serves as a general guide for industry and
researchers.

The above CARO type list demonstrates a potential
problem with the naming standard and antivirus cus-
tomer needs. The prioritization is researcher-centric,
not customer-centric. Undoubtedly, the malware re-
search community perspective of the problem is the
containment of mass computer virus outbreaks similar
to a biological virus and propagation has obvious
criticality. The customer perspective, however, may be
diametrically opposed. End users are generally more
interested in the functional payload of a malware
artifact rather than its replication intricacies—a local
threat perspective vice a global one.

3. MODEL DESCRIPTION

MaTR uses a logical, two-phased approach by first
identifying whether an executable sample is malicious
and then determining its most likely type. Two forward,
sequential feature selection searches identify the fea-
ture sets most significant to both detection and typing
from a set of static heuristic features. The features in
the set largely parallel those previously described in
related research.

Malware detection is a straightforward two-class
problem with distinct malware types grouped together
under a singe malware class, M. The malware typing
problem uses the distinct malware types provided by
antivirus scans. The model dataset is a concatenation
of static feature extractions from 32-bit non-malicious
executables (NM) and malware of the following types:
backdoors (BD), downloaders (DW), Trojans (TJ),
password stealers (PS), worms (W), droppers (DR)
and viruses (V). The sample corpus contains 40, 498
samples with 25, 974 malware samples from a recent
update to [14]. The NM samples come from clean
installations from vendor discs or digitally signed
installation files.

The dataset examined is not multivariate normal. As
a result, the classifier model selected for MaTR is the
decision tree due to its flexibility when dealing with
data from non-normal distributions and also categorical
data. Many recent malware detection research efforts
employ decision trees with great success [5], [6].

4. EXPERIMENT SETUP

The purposes of the following experiments are to
verify classifier detection accuracy using MaTR’s set
of static heuristic features and to extend the application
to malware typing. Both experiments are 32 factorial
designs testing the effect of two significant factors in
decision trees, minimum parent split and split criterion
values. The three treatment levels chosen for the min-
imum parent split value are 10, 20 and 30 based on
data from limited preliminary tests. The three treatment
levels chosen for split criterion value correspond to
the available functions in MATLAB: Gini’s diversity
index, the twoing rule and the maximum deviance
reduction.

The minimum parent split value defines the cut-
off threshold value for determining if the number of
samples associated with a node in the tree warrants
possible splitting. Lower cutoff values commonly lead
to overfitting and loss of generalization [15]. On the
other hand, larger minimum parent split values may
prevent the tree from identifying significant patterns in
the data or underfitting. The split criterion value maps
to a MATLAB function the tree employs to measure
impurity and determine the splitting feature and value.

Both experiments also use 5-fold cross validation
with 50 replications. Immediately prior to each repli-
cation, a new random sampling determines the total
set for subsequent cross validation runs. Preliminary
experiment results indicate high consistency between
both fold and replicate runs. To avoid overinflation of
the detection results, sampling adheres to a fixed 2:1
NM:M ratio to accommodate decision tree model re-
quirements. The malware samples are stratified random
samplings from the malware types tested.

5. EXPERIMENT RESULTS

This section discusses the test results for the model
parameter tests for both the detection and malware
typing problems. Classifiers for the two problems
demonstrate grossly different results with the detection
and typing classifiers exceeding 0.99 and 0.59 apparent
test accuracy rates respectively. Although typing accu-
racy is relatively low, it is impressive nonetheless as
it provides threat context without the need for manual
reverse engineering to malware detections and prioriti-
zation information for analyst backlogs. All ANOVAs
and plots associated with these experiment results have
95% confidence intervals.



Table 1. Detection confusion matrix statistics.

Statistic Producer Consumer Omission Commission
Accuracy Accuracy Error Error

NM 0.9949 0.9955 0.0051 0.0045

M 0.9909 0.9898 0.0091 0.0102

Table 2. ANOVA results for detection model.

Source Sum Sq. d.f. Mean Sq. F p-value

A 3.02e-04 2 1.51e-04 88.4 1.09e-37

B 1.12e-05 2 5.61e-06 3.29 0.0376

A*B 8.30e-07 4 2.07e-07 0.121 0.975

Error 3.83e-03 2241 1.71e-06

Total 4.14e-03 2249

5.1. Detection Results

The results for the detection classifier are quite
significant as all models exceed a 0.99 apparent test
accuracy rate with equally impressive false positive
and false negative rates. Table 1 shows the confusion
matrix statistics for the trained model with the best
treatment combination. The mean apparent test accu-
racy rate for this model over the cross validation and
replication runs is 0.9935 with a kappa value of 0.9855,
which demonstrates almost perfect agreement between
model prediction and actual classes.

The commission error rate of 0.0102 for class M
is low enough specificity to avoid deluging analysts
with false positives. Furthermore, the commission error
rate for class NM is low enough sensitivity to limit
overlooking potential malware. Although this experi-
ment uses a uniform cost of misclassification, a cost
matrix adjustment can shift the false positive and false
negative rates depending on operational needs.

The model parameter test examines the performance
impact of two factors, minimum parent split value
(A) and split criterion (B). According to the ANOVA
results in Table 2, strong evidence leads to rejection
of H0 concerning equality of the main effects for
factors A and B, but no evidence suggests a significant
interaction effect between these factors. All ANOVA
assumptions are met with residuals fitting a normal
distribution and having constant variance.

Fig. 1 shows the mean comparison for different
treatment level combinations with confidence intervals.
Expectedly, the classifier performance improves as the
minimum number of samples required for splitting
decreases for the treatment levels tested. This trend
is readily apparent in the mean comparison plot as
the three lowest accuracies have the highest minimum
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Figure 1. Comparison of detection parameters.

parent split values (Factor A). All treatment levels
with cutoff values of 30 have reduced performance
that is statistically significant from all other treatment
combinations.

The treatment level combinations with values for
Factor A of 20 exhibit a decreased performance from
points with values for Factor A of 10, but not enough
statistical evidence exists to make a definitive claim of
which is better. Both of these sets of combinations
likely occur nearer to the “knee” of a performance
curve that the minimum parent split values of 30,
which may explain the significant difference between
these data points and not the others.

The only remaining statistically significant treatment
combination is (10, dev), where the parameters are
the values for factors A and B respectively. This
treatment level combination yields the best result and is
significantly different from the (20, gdi) and (20, two)
combinations. This data point fits with another observ-
able trend, the general improvement in performance for
Factor B levels from two to gdi to dev.

These detection results show that MaTR demon-
strates results similar to the other malware detection
research using static analysis techniques and features.
The next section describes the extension MaTR makes
to the malware typing problem.

5.2. Typing Results

While seemingly not as spectacular as the detec-
tion tests, the malware typing model provides modest
performance relative to the previous detection results.
Considering the predictions do not require any lengthy
manual inspection process and only use static heuris-
tics, the typing results show a strong potential for



Table 3. Typing confusion matrix statistics.

Statistic Producer Consumer Omission Commission
Accuracy Accuracy Error Error

BD 0.7510 0.7033 0.2490 0.2967

DW 0.6593 0.6366 0.3407 0.3634

TJ 0.3678 0.3589 0.6322 0.6411

PS 0.4553 0.4993 0.5447 0.5007

W 0.4283 0.4548 0.5717 0.5452

DR 0.3599 0.4282 0.6401 0.5718

V 0.5630 0.6742 0.4370 0.3258

prioritization of analysis backlogs. Table 3 shows the
confusion matrix statistics for the model with the best
treatment level combination. The mean apparent test
accuracy rate for this model over the cross validation
and replication runs is 0.5904 with a kappa value
of 0.4738, which demonstrates moderate agreement
between model prediction and actual classes. Although
not extremely high, the expected value of a random
classifier is only 0.1429 given seven malware classes
tested.

Although the typing model fails to achieve high
accuracy on the specific malware types, it still demon-
strates potential value for identifying BD, DW and
V classes. Classifier performance for identifying true
TJ and DR samples is especially poor with producer
accuracies of 0.3678 and 0.3599 respectively.

Antivirus applications often classify the same sam-
ples inconsistently, which can negatively affect the re-
sults of this typing experiment, because the supervised
learning relies on the type labels from antivirus scans.
Future investigation may examine the performance
impact of confounding malware types together and
vendor labeling disparities to regain high confidence
in the results and maximize situational awareness.
For instance, classifier inconsistencies between the
backdoor and Trojan classes exhibit the highest error
concentration and account for 5% of all typing errors.

Another explanation for the difficulty the model
has classifying between malware types is a possibly
inherent inadequacy in the salient value of the static
heuristic feature set for making such determinations.
The feature set may contain enough informational
value to provide a high degree of accuracy for detec-
tion, but that may be its limit.

The model parameter test examines the performance
impact of two factors, minimum parent split value
(A) and split criterion (B). According to the ANOVA
results in Table 4, strong evidence leads to rejection of
H0 concerning equality of the main effects for A and
B, but no evidence suggests a significant interaction

Table 4. ANOVA results for typing model.

Source Sum Sq. d.f. Mean Sq. F p-value

A 7.65e-02 2 3.83e-02 891 2.15e-285

B 2.49e-03 2 1.20e-03 28.9 3.89e-13

A*B 4.98e-05 4 1.24e-05 0.290 0.885

Error 9.62e-02 2241 4.29e-05

Total 1.75e-01 2249
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Figure 2. Comparison of typing parameters.

effect between these factors. All ANOVA assumptions
for this test are met with similar residual normal and
variance plots from the detection test.

Fig. 2 shows the mean comparison for different
treatment level combinations with confidence intervals.
In this case, strong evidence suggests the treatment
combination that exhibits the best performance mean
for treatment combination (10, gdi) is different. No
significant difference exists between any of the two
and dev levels for factor B with the same level for
factor A (e.g., (30, two) and (30, dev)).

This plot shows general patterns similar to the
detection results. One observable trend is the gen-
eral improvement in performance from levels two to
dev to gdi for factor B, only slightly different than
the detection results. Another general improvement
trend is across treatment levels for factor A with
lower split values exhibiting significant performance
improvements.

5.3. Impact and Limitations

The high accuracy in generic malware detection
provides a significant fine granularity capability ad-
vancement for baseline cyber situational awareness
within local organization control. Adding a generic



detection capability as an additional layer of defense
adds additional capabilities. Additionally, typing infor-
mation provides critical information to organizational
leadership to consider available response options and
future defense investments.

Using the classifiers in a two-stage sequence, the
system detects most malware and additionally provides
as much threat context as possible. In the hypothetical
scenario of a malware on a system with access to
sensitive company data, these experimental detection
model most likely detects threat. The threat context
provided by the experimental typing model has a
high likelihood of identifying the backdoor allowing
leadership to trigger the appropriate response action
and observe threat activity. The same model has a
moderate likelihood of identifying the keylogger.

Although this specific malware typing experiment
did not yield a high confidence typing model against
all types, a generic malware typing capability pro-
vides more detailed contextual information and retains
significant value. Adjusting the cost functions can
also improve technique specificity to target specific
types of malware. All of this information clarifies
situational awareness in regards to system and network
integrity ultimately providing support for strategic and
tactical level decision making. MaTR inherits all of the
limitations associated with static heuristics.

6. CONCLUSIONS

Pattern recognition techniques can play a substantial
role in malware detection and typing especially in
cyber situational awareness and mission assurance. In
exceedingly complex networks, simplifying assessment
of operational readiness is a significant improvement
and can lead to better risk management. MaTR demon-
strates apparent malware detection accuracies above
99%. The performance results for the more difficult
problem of malware typing are 59% overall, much
higher than the expected value of 14% for a random
classifier. The accuracies for identifying some malware
classes are higher still.

Integration of this sensory data with other sensitive
system and network sensors may further illuminate
threat activity, and greatly improve upon defense-in-
depth strategies. Avoiding all of these sensors simul-
taneously may prove too difficult for even the most
determined adversaries.
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