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ABSTRACT

The spectral-spatial relationship of materials in a hyperspectral im-
age cube is exploited to partially automate the creation of Geographi-
cal Information System (GIS) layers. The topological neighborhood
preservation property of the Self Organizing Map (SOM) is clus-
tered into six (partially overlapping) neighborhoods thatare mapped
into the image domain to locate in-scene structures of similar ma-
terial type. GIS layers are abstracted through spatial logical and
morphological operations on the six image domain material maps
and a novel road finding algorithm connects road segments under
significant tree-occlusion resulting in a contiguous road network. It
is assumed that specific knowledge of the scene (e.g. endmember
spectra)is not available. The results are eight separate high-quality
GIS layers (Vegetation, Trees, Fields, Buildings, Major Buildings,
Roadways, and Parking Areas) that follow the scene featuresof the
hyperspectral image and are separately and automatically labeled.
The material maps resulting from clustering the SOM have an 84.3%
average accuracy, which increases to 93.9% after spatial processing
into GIS layers.

Index Terms— Geographic Information Systems, Hyperspec-
tral Image Processing, Hyperspectral, Self-Organizing Map, Mor-
phological

1. INTRODUCTION

Geographical Information Systems (GISs) use layers of vector data
(shape files) to represent features in a scene. The often manual pro-
cess begins with an orthorectified RGB image and outlines spatial
features of interest. The resulting layers are then viewed indepen-
dent of the imagery providing an abstraction of the scene that is often
more usable to the observer than the original image itself.

The previously described manual process is prone to human er-
ror and is time consuming. Time and cost considerations limit fea-
ture shapes to regular polygons and result in a slow update cycle.
The manual effort is further complicated by scene clutter leaving
the abstraction open to interpretation. In order to verify the results,
ground truth data is collected by visiting the area of interest. As new
imagery is collected and orthorectified, existing shape files are often
manually adjusted and updated to reflect cumulative scene changes.
As stated in [1], “‘. . . the biggest challenge is the currencyof data,
the authenticity of data,’ and the primary complaint is ‘that’s not my
house’”.

Hyperspectral imagery, with its high spectral fidelity, holds the
possibility of partially or fully automating and significantly improv-
ing this process, reducing time and cost of creating shape files, and
increasing the quality of the feature outlines. Special attention needs
to be paid to the road network, and as noted in [2], “. . . primarily in
urban areas the concern is with the road pattern, as this determines

the framework in which the complexities of urban land use change
usually take place.”

This work combines both spectral and spatial analysis of hy-
perspectral imagery to automate shape file generation. The expec-
tation is that our automated process will reduce human error, in-
crease shape files creation rate, increase fidelity of shapesfrom sim-
ple polygons to more meaningful feature outlines, and closethe
shape file / imagery gap as shape files are derived directly from the
hyperspectral image.

1.1. Spectral Analysis

A myriad of approaches exist for clustering hyperspectral data. Two
notable unsupervised clustering methods are K-means clustering and
Kohonen’s Self-Organizing Map (SOM) [3]. Spectral analysis with
K-Means clustering poses several challenges. The most notable are
determining the number of clustersK and spatially connecting the
results. K-Means clustering is used to spectrally cluster pixels in [4],
whereK was varied from 2–16 yielding 101–695 separate spatial
regions. Connecting these regions into meaningful abstractions that
are separately labeled is an insurmountable task.

The SOM offers a more meaningful spectral clustering and pro-
vides an intuitive mechanism for mapping spectral clustersto the
spatial image domain. Examples of this by the authors in [5] vi-
sualize the clustering of the SOM neighborhood topology andthe
corresponding image domain representation. Data in the SOMare
organized on a two-dimensional lattice ofprocessing elements (PEs).
Each PE has associated with it a prototype vector that is a quantiza-
tion of the data. One may consider the representation of the SOM as
having “pure” spectra mapped to given SOM PEs and mixed spectra
mapped to PEs between the pure spectra. This produces distinguish-
able regions that can be correlated with specific materials of interest
(MOIs). By identifying the regions on the SOM lattice and mapping
them to the spatial domain, a binary spatial image material map can
be developed which identifies the location of each material.This
spectral-to-spatial mapping is reliable due to the global ordering and
topological preservation properties of the SOM. These material maps
are the basis for the spatial analysis using logical and morphological
operations.

1.2. Spatial Analysis

Morphologicalclose andopen operations performed on the material
maps with a known structuring element (SE) result in GIS layers.
A SE is a binary valued matrix that can be as small as a(1 × 2)
or (2 × 1). The SE, similar to a sliding window, selects every sub-
set of the material map equal in spatial size to the SE. The SE size
is chosen to correspond to the minimum scene feature sizes (e.g.,
where a minimum building size of3 × 3 pixels prescribes a3 × 3



Fig. 1. Synthetic hyperspectral image cube.

SE). The morphological open and close operations are used intwo
ways: to improve aesthetic appeal of the GIS layers; and to isolate
larger features (e.g., fields). A morphological close fills in the space
between pixels clustered in an area smaller than the size of the SE.
An open deletes pixels smaller than the size of the SE. Iterative open
and close operations with a SE that increases in each dimension by
one during each iteration isolates larger scene features.

Morphological operations perform similar to a conceptual un-
derstanding of a scene as an observer sees it. That is, when a person
views a binary image, the tendency is to cluster close-lyingpixels (a
morphological close) into recognizable shapes, and to ignore speckle
and other artifacts (a morphological open) that have no distinguish-
able shape or order.

2. METHODOLOGY

The scene used in this work is a400 × 400 pixel synthetic hy-
perspectral image cube with 194 spectral bands in the range397.5
– 2480.2nm shown in Fig. 1. The image is resampled spectrally
to reflect a NASA/JPL AVIRIS-acquired image. It is atmospheri-
cally corrected using the empirical line method and irrecoverably
lost spectra due to atmospheric water absorption are removed.

2.1. Self Organizing Map

The process begins with a clustering of the hyperspectral image us-
ing a SOM where the learning parameters are specified in Table1.
The Normalized Difference Vegetative Index (NDVI) and exemplars
from building roofs and roadways seed the algorithm to cluster the
SOM neighborhoods and label PEs with a material type. An example
of three SOM clustered regions is shown in Fig. 2(a).

2.2. Vegetation Shape File

Vegetation PEs are identified by way of the NDVI expressed in Eq. 1
where RED is the average of the bands between580nm and690nm
and NIR is the average between725nm and1100nm. The vegeta-
tion region of the SOM is the green area shown in Fig. 2(a) where a
threshold of NDVI> 0.3 is applied to the SOM PEs. This region is
next divided into tree and non-tree vegetative regions.

NDVI =
NIR − RED
NIR + RED

(1)

2.3. Tree Shape File

Broad-leaf trees are a subset of vegetation segmented usingthe stan-
dard deviation of the near-infrared scatter normalized between 950
and 1250nm. The standard deviation is thresholded at a valueof 0.2
where values above that threshold are declared as trees, theresults
of which are shown in Fig. 2(b). The resulting material map for trees
is shown in Fig. 2(c). To improve aesthetic appeal, the tree map is
closed with a3 × 3 SE producing the results in Fig. 2(d). The size
of the SE is chosen to correspond with the minimum tree size given
a spatial resolution of≈ 1.5m/pixel.

Table 1. SOM learning parameters

Parameter Value

Size 40 × 40 PEs

Initial / final learn rates α = 0.8 / α = 5 × 10−4

Initial / final neighborhood widths σ = 1.0 / σ = 5 × 10−4

Training steps 6 × 106

2.4. Non-Tree Vegetation and Fields Shape Files

The non-broad-leaf tree vegetative region shown in Fig. 2(e) results
when the tree region in Fig. 2(b) is logically deleted from the green
vegetation region show in Fig. 2(a). The associated material map
shown in Fig. 2(f) consists primarily of grasses. A field is defined as
having a spatial area between5 × 5 and24 × 24 pixels, which pre-
scribes the SE size. The fields shape file is generated by performing
20 iterative open/close morphological operations while increasing
the SE by one in each dimension from the minimum (5 × 5) to the
maximum size (24 × 24). The final step is to logically remove the
road network shape file shown in Fig. 2(p) (created later in Sec. 2.7).
The final fields shape file (less road network) is shown in Fig. 2(g).

The final non-tree vegetation shape file shown in Fig. 2(h) is cre-
ated by logically deleting three shape files from the vegetation mate-
rial map in Fig. 2(f) and then performing a morphological close with
a 3 × 3 SE for aesthetic appeal. The three shape files are the tree
shape file in Fig. 2(d), the final buildings shape file in Fig. 2(k) (cre-
ated later in Sec. 2.5) and the road network shown in Fig. 2(p)(from
Sec. 2.7).

2.5. Buildings and Major Buildings Shape Files

To create the builidngs shape file, theℓ2–norm between an exem-
plar rooftop spectra (manually) selected from the hyperspectral im-
age and each PE’s weight vector is computed. The distances are
thresholded using a value of 2 generating the segmentation of the
SOM shown in Fig. 2(i). This segmentation is used to create the
rooftop material map in Fig. 2(j).

The maps in Figs. 2(f,g) and Figs. 2(n,o) (created later) are
logically added to create anegative image mask (NIM) shown
in Fig. 3(a) indicating where buildings arenot located. The inverse
of the NIM is added to the rooftop material map from Fig. 2(j) (also
shown in Fig. 3(b)) resulting in the buildings map in Fig. 3(c) which
is then morphologically opened with a3×3 SE resulting in Fig. 3(d).
The minimum building size is≈ 3×3 which prescribes the SE size.
Finally, the road network from Fig. 2(p) (created later) is logically
removed resulting in in the building shape file in Fig. 2(k).

A major building is (arbitrarely) defined as five times the area
of a typical small building (e.g., a large shed) giving way toa7 × 7
pixel region. As such, the buildings shape file shown in Fig. 3(d)
is opened with a7 × 7 SE deleting smaller building structures. A
morphological dilation using a5 × 5 SE followed by a morpholog-
ical close using a3 × 3 SE produces the major buildings shape file
in Fig. 2(l). For aesthetic appeal, the dilation increases the size of the
major buildings to make them more prominent, and the close ensures
the shapes are without visual distractions from missing pixels.

2.6. Parking Lots Shape File

Exemplar roadway spectra from the hyperspectral image as used in
Sec. 2.5 determines the SOM region in Fig. 2(m) and the roadway
material map in Fig. 2(n). Parking areas are defined as havinga spa-
tial area between2 × 2 and10 × 10 pixels, which prescribes the



(a) SOM topology (b) SOM with tree threshold (c) Tree material map (d) Final GIS tree shape file

(e) SOM with vegetation (less trees) threshold(f) Vegetation (less trees) material map (g) Final GIS fields shape file (h) Final GIS vegetation (less trees) shape file

(i) SOM with rooftop threshold (j) Rooftop material map (k) Final GIS buildings shape file (l) Final GIS major buildings shape file

(m) SOM with roadway threshold (n) Roadway material map (o) Final GIS parking areas shape file (p) Final GIS roadway shape file

Fig. 2. A pictorial view of the process presented in this work that generates GIS shape files from a hyperspectral image cube.



(a) Negative image mask (NIM) (b) Rooftop material map

(c) Rooftop map (white) and NIM (yellow) (d) After morphological open (3 × 3 SE)

(a) False color composite (b) Road network, parking areas, and buildings

(c) Vegetation (less trees) and fields (d) Trees

Fig. 3. Process to create the buildings shape file. Fig. 4. False color composite and final GIS layers.

SE size. The iterative morphological open/close method described
in Sec. 2.4 (used to abstract the fields shape file) is used on the road-
way material map from Fig. 2(n) to produce the parking areas shape
file in Fig. 2(o).

2.7. Roadway Shape File

The roadway shape file results from a novel road finding algo-
rithm that requires a reduced roadway material map, a NIM, and
a maximum NIM threshold. The reduced material map results af-
ter performing a morphological open operation with a3 × 3 SE
on the roadway material map from Fig. 2(n) and logically delet-
ing Figs. 2(f,g,l,o) and Fig. 3(d). The SE size prevents roads in this
scene, which are two-lane roads and typically on the order of4-5
pixels wide (roughly 6-7.5m), from being deleted. Possiblenon-road
network pixels less than the SE size are removed (e.g. driveways). A
NIM is constructed as in Sec. 2.5 with Figs. 2(f,g,l,o) and Fig. 3(d).

The road finding algorithm operates iteratively. During each it-
eration, it considers every pair of roadway pixels and compares the
number of NIM pixels between them to the NIM threshold. The NIM
threshold starts at 0 and is incremented to some maximal value (8 in
this work). When the maximum threshold is reached, the algorithm
logically removes the buildings shape file, Fig. 3(d), from the NIM,
resets the NIM threshold to 0, and iterates. The road finding algo-
rithm requires an experimentally determined 16 iterations, resulting
in the GIS roadway shape file presented in Fig. 2(p).

3. RESULTS & CONCLUSION

Eight specific GIS shape files – Fields, Trees, Vegetation, Non-Tree
Vegetation, Buildings, Major Buildings, Roadways, and Parking Ar-
eas – are abstracted from the hyperspectral image. Six are presented

in Fig. 3. Spectral analysis resulted in an 84.3% average accuracy
increasing to 93.9% (as compared with ground truth) after spatial
analysis with logical and morphological operations. It is important
to understand that the resulting shape files arenot intended to be
a pixel-for-pixel representation of the ground truth and wedid not
maximize the pixel-level classification. Rather, the process is de-
signed for the qualitatively excellent understanding of the scene to a
human observer as demonstrated in Fig. 4.

4. DISCLAIMER

The views expressed in this thesis are those of the author anddo not
reflect the official policy or position of the United States Air Force,
Department of Defense, or the United States Government.
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