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ABSTRACT

The spectral-spatial relationship of materials in a hypecgral im-
age cube is exploited to partially automate the creationezfgsaphi-
cal Information System (GIS) layers. The topological neminhood
preservation property of the Self Organizing Map (SOM) issel
tered into six (partially overlapping) neighborhoods thia mapped
into the image domain to locate in-scene structures of aimnila-
terial type. GIS layers are abstracted through spatialkcidgand
morphological operations on the six image domain materi@bsn

the framework in which the complexities of urban land usengea
usually take place.”

This work combines both spectral and spatial analysis of hy-
perspectral imagery to automate shape file generation. Xjece
tation is that our automated process will reduce human ,emmer
crease shape files creation rate, increase fidelity of sfepassim-
ple polygons to more meaningful feature outlines, and clbse
shape file/imagery gap as shape files are derived directfy the
hyperspectral image.

and a novel road finding algorithm connects road segmenterund
significant tree-occlusion resulting in a contiguous roativork. It ~ 1.1. Spectral Analysis
is assumed that specific knowledge of the scene (e.g. endenemb

spectra)s not available. The results are eight separate high-quality MYriad of approaches exist for clustering hyperspectasidTwo

GIS layers (Vegetation, Trees, Fields, Buildings, Majoil@nags,
Roadways, and Parking Areas) that follow the scene featfréee
hyperspectral image and are separately and automaticdigidd.
The material maps resulting from clustering the SOM have4a%
average accuracy, which increases to 93.9% after spatiaépsing
into GIS layers.

notable unsupervised clustering methods are K-mean®dingtand
Kohonen's Self-Organizing Map (SOM) [3]. Spectral anadysith
K-Means clustering poses several challenges. The mosblectse
determining the number of clustef§ and spatially connecting the
results. K-Means clustering is used to spectrally clustaipin [4],
where K was varied from 2-16 yielding 101-695 separate spatial
regions. Connecting these regions into meaningful akstrecthat

Index Terms— Geographic Information Systems, Hyperspec- gre separately labeled is an insurmountable task.

tral Image Processing, Hyperspectral, Self-OrganizingpMdor-
phological

1. INTRODUCTION

Geographical Information Systems (GISs) use layers ofovetdta
(shape files) to represent features in a scene. The oftenahgros

The SOM offers a more meaningful spectral clustering and pro
vides an intuitive mechanism for mapping spectral clusterthe
spatial image domain. Examples of this by the authors in [5] v
sualize the clustering of the SOM neighborhood topology tued
corresponding image domain representation. Data in the &@M
organized on a two-dimensional latticebcessing elements (PES).
Each PE has associated with it a prototype vector that is atiqaa

cess begins with an orthorectified RGB image and outlinesadpa tion of the data. One may consider the representation of @d &s

features of interest. The resulting layers are then viewmeépen-
dent of the imagery providing an abstraction of the scengddiudten
more usable to the observer than the original image itself.

having “pure” spectra mapped to given SOM PEs and mixed spect
mapped to PEs between the pure spectra. This producegdistin
able regions that can be correlated with specific materfafgerest

The previously described manual process is prone to human e(MOIs). By identifying the regions on the SOM lattice and ey

ror and is time consuming. Time and cost considerationd fieai-
ture shapes to regular polygons and result in a slow update.cy
The manual effort is further complicated by scene cluttewileg
the abstraction open to interpretation. In order to vetify tesults,
ground truth data is collected by visiting the area of inderds new
imagery is collected and orthorectified, existing shaps file often
manually adjusted and updated to reflect cumulative scesmeges.
As stated in [1], “...the biggest challenge is the currenfyata,
the authenticity of data,” and the primary complaint is tthaot my
house™.

Hyperspectral imagery, with its high spectral fidelity, d®khe
possibility of partially or fully automating and significéypimprov-
ing this process, reducing time and cost of creating shaps, &ind
increasing the quality of the feature outlines. Speciardion needs
to be paid to the road network, and as noted in [2], “... prilpan
urban areas the concern is with the road pattern, as thiswiets

them to the spatial domain, a binary spatial image materégd oan
be developed which identifies the location of each materfdiis
spectral-to-spatial mapping is reliable due to the globdéong and
topological preservation properties of the SOM. These ristmaps
are the basis for the spatial analysis using logical and haogical
operations.

1.2. Spatial Analysis

Morphologicalclose andopen operations performed on the material
maps with a known structuring element (SE) result in GIS faye
A SE is a binary valued matrix that can be as small 48 & 2)

or (2 x 1). The SE, similar to a sliding window, selects every sub-
set of the material map equal in spatial size to the SE. Thel&E s
is chosen to correspond to the minimum scene feature sizgs (e
where a minimum building size ¢f x 3 pixels prescribes &8 x 3



Fig. 1. Synthetic hyperspectral image cube.

SE). The morphological open and close operations are ustwebin

ways: to improve aesthetic appeal of the GIS layers; andolatis

larger features (e.g., fields). A morphological close filistie space

between pixels clustered in an area smaller than the sizeedSE.
An open deletes pixels smaller than the size of the SE. iterapen
and close operations with a SE that increases in each diorehgi
one during each iteration isolates larger scene features.

Morphological operations perform similar to a conceptual u
derstanding of a scene as an observer sees it. That is, whesanp

views a binary image, the tendency is to cluster close-Ipingls (a

morphological close) into recognizable shapes, and taespeckle

and other artifacts (a morphological open) that have nandjsish-
able shape or order.

2. METHODOLOGY

The scene used in this work is400 x 400 pixel synthetic hy-
perspectral image cube with 194 spectral bands in the raggé

— 2480.2nm shown in Fig.1. The image is resampled spectrally
to reflect a NASA/JPL AVIRIS-acquired image. It is atmospher

cally corrected using the empirical line method and irrecably
lost spectra due to atmospheric water absorption are rainove

2.1. Self Organizing Map

The process begins with a clustering of the hyperspectradjérus-

ing a SOM where the learning parameters are specified in Table

The Normalized Difference Vegetative Index (NDVI) and exsans
from building roofs and roadways seed the algorithm to eluste

SOM neighborhoods and label PEs with a material type. An @kam

of three SOM clustered regions is shown in Fig. 2(a).

2.2. Vegetation Shape File

Vegetation PEs are identified by way of the NDVI expressedjnlE

where RED is the average of the bands betwa#mm and690nm

and NIR is the average betwe&a5nm and1100nm. The vegeta-
tion region of the SOM is the green area shown in Fig. 2(a) e/laer

Table 1. SOM learning parameters
Parameter Value
Size 40 x 40 PEs
Initial / final learn rates a=08/ a=5x10"*
Initial / final neighborhood widths ¢ =1.0 / ¢ =5 x 107*
Training steps 6 x 10°

2.4. Non-Tree Vegetation and Fields Shape Files

The non-broad-leaf tree vegetative region shown in Fig. &gults
when the tree region in Fig. 2(b) is logically deleted frore tireen
vegetation region show in Fig.2(a). The associated materégp
shown in Fig. 2(f) consists primarily of grasses. A field iined as
having a spatial area betwesn< 5 and24 x 24 pixels, which pre-
scribes the SE size. The fields shape file is generated byrpenip
20 iterative open/close morphological operations whileréasing
the SE by one in each dimension from the minimuimx(5) to the
maximum size Z4 x 24). The final step is to logically remove the
road network shape file shown in Fig. 2(p) (created later i 34).
The final fields shape file (less road network) is shown in Kigj.2

The final non-tree vegetation shape file shown in Fig. 2(hjds c
ated by logically deleting three shape files from the vegmiahate-
rial map in Fig. 2(f) and then performing a morphologicalsgavith
a3 x 3 SE for aesthetic appeal. The three shape files are the tree
shape file in Fig. 2(d), the final buildings shape file in Fid))Z€re-
ated later in Sec. 2.5) and the road network shown in Fig.(@(@n
Sec. 2.7).

2.5. Buildings and Major Buildings Shape Files

To create the builidngs shape file, the-norm between an exem-
plar rooftop spectra (manually) selected from the hyperspkim-
age and each PE’s weight vector is computed. The distanees ar
thresholded using a value of 2 generating the segmentafitimeo
SOM shown in Fig. 2(i). This segmentation is used to creage th
rooftop material map in Fig. 2(j).

The maps in Figs.2(f,g) and Figs.2(n,0) (created later) are
logically added to create aegative image mask (NIM) shown
in Fig. 3(a) indicating where buildings aret located. The inverse
of the NIM is added to the rooftop material map from Fig. 2§)so
shown in Fig. 3(b)) resulting in the buildings map in Fig.)3éich
is then morphologically opened witt8a« 3 SE resulting in Fig. 3(d).
The minimum building size isz 3 x 3 which prescribes the SE size.
Finally, the road network from Fig. 2(p) (created later)agitally

threshold of NDVI> 0.3 is applied to the SOM PEs. This region is "émoved resulting in in the building shape file in Fig. 2(k).

next divided into tree and non-tree vegetative regions.

NIR — RED
NDVI = NIR + RED @

2.3. Tree Shape File

Broad-leaf trees are a subset of vegetation segmented thsirsgan-
dard deviation of the near-infrared scatter normalizedvbeh 950
and 1250nm. The standard deviation is thresholded at a Al
where values above that threshold are declared as treeesihiés
of which are shown in Fig. 2(b). The resulting material maptfees
is shown in Fig.2(c). To improve aesthetic appeal, the trap im

A major building is (arbitrarely) defined as five times theaare
of a typical small building (e.qg., a large shed) giving wayatp x 7
pixel region. As such, the buildings shape file shown in Fd) 3
is opened with & x 7 SE deleting smaller building structures. A
morphological dilation using & x 5 SE followed by a morpholog-
ical close using & x 3 SE produces the major buildings shape file
in Fig. 2(l). For aesthetic appeal, the dilation increabessize of the
major buildings to make them more prominent, and the closares
the shapes are without visual distractions from missinglpix

2.6. Parking Lots Shape File

Exemplar roadway spectra from the hyperspectral image e ins

closed with a3 x 3 SE producing the results in Fig. 2(d). The size Sec. 2.5 determines the SOM region in Fig.2(m) and the ropdwa

of the SE is chosen to correspond with the minimum tree sizengi

a spatial resolution of 1.5m /pixel.

material map in Fig. 2(n). Parking areas are defined as havapa-
tial area betweerR x 2 and10 x 10 pixels, which prescribes the



(a) SOM topology (b) SOM with tree threshold (c) Tree material map (d) Final GIS tree shape file

(i) SOM with rooftop threshold (j) Rooftop material map / (k) Final GIS buildings shape file () Final GIS major buildings shape file

—
>

(m) SOM with roadway threshold (n) Roadway material map (o) Final GIS parking areas shagpe fil (p) Final GIS roadway shape file
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Fig. 2. A pictorial view of the process presented in this work thettgrates GIS shape files from a hyperspectral image cube.
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(c) Rooftop map (white) and NIM (yellow)

(d) After morpholieal open 8 x 3 SE)
Fig. 3. Process to create the buildings shape file.

SE size. The iterative morphological open/close methodrieed
in Sec. 2.4 (used to abstract the fields shape file) is usedeao#al-
way material map from Fig. 2(n) to produce the parking arbaps
file in Fig. 2(0).

2.7. Roadway Shape File

Ly ok - i

(b) Road network, parking areas, and buildings

(a) False color composite

\

|

(c) Vegetation (less trees) and fields

(d) Trees

Fig. 4. False color composite and final GIS layers.

in Fig. 3. Spectral analysis resulted in an 84.3% averageracg
increasing to 93.9% (as compared with ground truth) aftetiap
analysis with logical and morphological operations. ltrigbrtant
to understand that the resulting shape filesrateintended to be
a pixel-for-pixel representation of the ground truth and dig not
maximize the pixel-level classification. Rather, the pssces de-
signed for the qualitatively excellent understanding efshene to a

The roadway shape file results from a novel road finding algohuman observer as demonstrated in Fig. 4.

rithm that requires a reduced roadway material map, a NIM, an
a maximum NIM threshold. The reduced material map results af

ter performing a morphological open operation witl3 a« 3 SE
on the roadway material map from Fig.2(n) and logically tele
ing Figs. 2(f,g,1,0) and Fig. 3(d). The SE size prevents saadhis
scene, which are two-lane roads and typically on the ordel-5f
pixels wide (roughly 6-7.5m), from being deleted. Possitde-road
network pixels less than the SE size are removed (e.g. daiygwA
NIM is constructed as in Sec. 2.5 with Figs. 2(f,g,l,0) and. B{(d).

The road finding algorithm operates iteratively. Duringtede
eration, it considers every pair of roadway pixels and caepshe
number of NIM pixels between them to the NIM threshold. Th&INI
threshold starts at 0 and is incremented to some maximad ¥8lin
this work). When the maximum threshold is reached, the @hyar
logically removes the buildings shape file, Fig. 3(d), frdre NIM,
resets the NIM threshold to 0, and iterates. The road findigg-a
rithm requires an experimentally determined 16 iteratioesulting
in the GIS roadway shape file presented in Fig. 2(p).

3. RESULTS & CONCLUSION

Eight specific GIS shape files — Fields, Trees, Vegetatiom-Nee
Vegetation, Buildings, Major Buildings, Roadways, andkitag Ar-
eas — are abstracted from the hyperspectral image. Six @semed

4. DISCLAIMER

The views expressed in this thesis are those of the authal@ndt
reflect the official policy or position of the United Stateg Aorce,
Department of Defense, or the United States Government.
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