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ABSTRACT

Feature subset selection is a well studied problem in machine
learning. One short-coming of many methods is the selection
of highly correlated features; a characteristic of hyperspec-
tral data. A novel stochastic feature selection method with
three major components is presented. First, we present an
optimized feature selection method that maximizes a heuris-
tic using a simulated annealing search which increases the
chance of avoiding locally optimum solutions. Second, we
exploit local cross correlation pair-wise amongst classesof
interest to select suitable features for class discrimination.
Third, we adopt the concept of distributed spacing from the
multi-objective optimization community to distribute features
across the spectrum in order to select less correlated features.
The classification performance of our semi-embedded feature
selection and classification method is demonstrated on a 12-
class textile hyperspectral classification problem under sev-
eral noise realizations. These results are compared with a va-
riety of feature selection methods that cover a broad range of
approaches.

Index Terms— Hyperspectral, feature selection, detec-
tion, dimensionality reduction

1. INTRODUCTION

Hyperspectral data provides an abundance of spectral infor-
mation per spatial location; however, processing this typeof
data can be computationally time intensive. This computa-
tional burden may by reduced if a subset of meaningful fea-
tures can be extracted. Many methods exist to extract mean-
ingful feature subsets from hyperspectral data, their accuracy
depends on the ability to retain important classification infor-
mation.

Feature selection methodologies are classified into three
types: filter, wrapper, and embedded [1]. The filter method
incorporates properties of the data to select a feature subset;
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some examples include Relief F and Bhattacharyya methods.
The wrapper method uses a feedback of classification accu-
racy to select the appropriate feature subset; for example ge-
netic and Best First Search methods. Embedded methods de-
termine a feature subsets’ “goodness”, and continually up-
dates the feature subset to produce a better feature subset until
the stopping criterion is met [1]. Examples of these methods
are C4.5 [1] and generalized relevance learning vector quan-
tization improved (GRLVQI) [2]. All of the previously men-
tioned methods train on the data obtained from the a specific
imaging system and provide feature subsets based on the res-
olution of that imaging system.

The resolution of typical lab collected hyperspectral data
is on the order of a magnitude better than most imaging sys-
tems in the field. The discriminating ability of the feature
subsets produced from higher resolution lab data are typically
better than what might be obtained with lower spectral resolu-
tion fielded systems. The feature selection method presented
in this paper allows for the unique ability to select features
realizable by a low resolution imaging system based on the
high resolution laboratory data, allowing for a more informed
selection of features resulting in excellent classification ac-
curacy. This is accomplished by adjusting an analysis win-
dow over the laboratory data to accommodate the resolution
capability of the target imaging system used to collect the
hyperspectral data. This novel methodology incorporates a
stochastic search approach (simulated annealing search algo-
rithm [3]) with a heuristic that guides the search. The result
is a non-greedy local search of the spectral domain that pro-
vides a locally optimal solution. The feature subset is less-
redundant than other methods, due to a distributed spacing
algorithm incorporated into the search.

One of the goals of feature selection is to produce a fea-
ture subset that is not correlated, where correlation indicates
redundancy. Redundant features are often noted as adding
nothing new to the discriminating capability of the feature
subset and are typically considered unnecessary [4]. The
feature selection method presented in this work produces
a less-redundant/less-correlated feature subset that demon-
strates good discriminating capability in the presence of



noise. This is accomplished by incorporating the distributed
spacing concept, typically used to solve Multi-Objective op-
timization problems, as outlined by Coello Coelloet.al. [5],
and Deb and Srinivas [6].

A correlation-based detector is specified that compliments
the proposed feature selection methodology. The capability
of the detector is compared to that of the Minimum Eucle-
dian Distance (MED) classifier with the features selected us-
ing GRLVQI, Bhattacharyya, Relief F and the feature selec-
tion method presented in this work. The result of the detec-
tor/classifier is shown over a range of additive white Gaussian
noise realizations.

2. PROPOSED FEATURE SELECTION/DETECTION

The Non-correlated Aided Simulated Annealing Feature Se-
lection (NASAFS) method selects features in a pairwise man-
ner, where the results of each pair is combined into a database
of ‘distinguishable features’ for discriminating the reference
class from all other classes. The database is then used by the
detection algorithm to categorize unseen data samples. Al-
though Simulated Annealing (SA) can be processing inten-
sive, it is not a limiting factor in the processing of the feature
set.

2.1. Feature Selection Methodology

The proposed NASAFS works as follows:

1. Train on the reference class samples to determine the
covariance threshold (k) for the heursitic function.

2. Randomly select a subset of feature ‘bins’ (Fig. 1), en-
suring optimal distribution across the signal domain,
and then evaluate them with the heuristic.

3. The heuristic evaluates the feature set and returns a
value (Eqn. 3) to guide the SA search.

4. A feature ‘bin’ in the feature subset is replaced with
a random pick of the remaining bins in a manner that
maintains the distributed spacing requirement, then the
new feature subset is evaluated by the heuristic.

5. The value returned from the heuristic is used to deter-
mine if the new subset is either kept or discarded.

6. A different feature ‘bin’ in the feature subset is selected
and steps four through six repeated until convergence
(currently a fixed number of training steps).

NASAFS trains on the reference class samples by finding
the worst cross covariance of every combination of the sam-
ples for each corresponding bin of the reference class (i.e.,
R1(A) with R2(A), R1(A) with R3(A) etc., where in the
form Rs(b), R is the reference class,s is the sample, and
b is a specific bin, see Fig. 1). This covariance value be-
comes the threshold (k) used in the heuristic in Eqn. 3. A
less-correlated feature subset is ensured by distributingnewly
selected features across the spectrum. Feature distribution

across the spectrum is accomplished by the method presented
by Coello Coelloet.al. [5] and proposed by Deb and Srini-
vas [6], and is accomplished by computing the measure of
distributed spacing (ι) [6] which is the value placed on the
distribution of the features in the feature subset according to
the division/sub-regions of the spectral bands:
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whereq is the number of sub-regions (Fig. 1) that the signal
is divided into,ni is the actual number of selected feature
points in theith sub-region of the signal(s),ni is the expected
number feature points in theith sub-region of the signal (if
sub-regions are unequal, a weighting must be applied), and
σ2

i is the variance of the selected feature points of theith sub-
region of the signal. The variance is calculated similar to that
in [6]:
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for i = 1, 2, ..., q (2)

whereP is the total number of spectral bands. The num-
ber of sub-regions (q) of the signal is user defined, but could
be determined in some other manner such as the correlation
structure of the data. The best (optimal) less-correlated case,
based on the number of allowed features in the feature subset
and the number of sub-regions over the signal, is calculated.
This best case value (e.g.,if the feature subset is to contain six
features, then for the case in Fig. 1, there would be two fea-
tures per sub-region) is used as a baseline when determining
the actual correlation of the selected feature subset. A feature
subset that meets the desired percentage of optimality (user
defined) is allowed to proceed to the heuristic function of the
feature selection algorithm. Otherwise, the previously picked
feature must be returned to the open list and a replacement
feature is randomly picked and the process repeated.

The heuristic returns values based on a sequential set of
calculations. The cross covarianceC

f
R,T is calculated us-

ing a feature subset of the reference class corresponding to
the feature subset of the target class (e.g., R1(A,C,E, I)
to T1(A,C,E, I), where T is the target class, Fig. 1).
This value is compared to the covariance thresholdk. If
C

f
R,T ≥ k, then (1 − C

f
R,T ) is returned per Eqn. 3, oth-

erwise the autocorrelation (ℜx) of the bins of each class
(reference and target) is accomplished and the absolute
distance of these values,Nd, is computed whereNd =
|ℜx(T1(A,C,E, I) −ℜx(R1(A,C,E, I))|. The result is
compared to a distance thresholdDt (which is updated every
time this threshold is exceeded) to determine the appropriate
value to return. The heuristich is expressed as:
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(3)
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Fig. 1. Example of a signal segment divided into bins and sub
regions. Here, black (solid line) is the reference signal and
red (dashed line) is the test signal, 1 . . . 3 are the subregions
and A . . . I are the bins.

Since the heuristic uses features that are bins of the spec-
tral domain, the user must define a bin size, typically set to
the bandwidth of the targeted collection system, used for the
detection task. This bin size is used to parse up the signal,
an example of bin size and sub-regions of the spectral bands
is shown in Fig. 1. The feature selection algorithm selects
a random (specified by the user) number of features as the
starting feature subset. The feature subset is evaluated bythe
heuristic (Eqn. 3), which ranks the feature subset as a group.
Each feature, within the original feature subset, is replaced
by a randomly selected feature, one at a time and sequentially
from the open list of features. Each feature replacement cre-
ates a new feature subset that is evaluated by the heuristic.If
the new feature subset is kept, according to the SA algorithm,
the feature that it replaced is put back on the open list. If the
new feature subset is not kept, the replaced feature is restored
to the feature subset and the new feature is placed on the open
list.

2.2. Detector Methodology

The correlation detection method (CoDeM) is based on the
principals of the feature selection method presented earlier.
Due to the pairwise process of NASAFS, CoDeM also per-
forms a pairwise detection that labels a sample as either in-
class or out-of-class. If the sample is out-of-class, no other
information is known, just that it is not the same as the ref-
erence class. CoDeM uses the average value of each bin for
its calculations. Thus, for a feature subset consisting of six
bins from NASAFS, the feature subset of CoDeM will have
six scalar values.

CoDeM determines a covariance threshold (kd) using
noisy reference data, where the noise is a fraction of the
noise power of the test samples. It determines the worst
cross covariance of every combination of the samples for
each corresponding bin of the feature subset of the reference
class (i.e., R1(A) with R2(A), R1(C) with R2(C), etc.). A
distance threshold (dd) is determined by finding the abso-

lute distance of the autocorrelation of the non-noisy bins of
the reference class to the noisy bins of the reference class.
The cross covarianceCR,T is calculated for the mean of the
non-noisy reference class bins to the mean of the noisy test
class bins.Td is the absolute distance of the autocorrelation
of the non-noisy reference class bins to the noisy test class
bins. If CR,T ≤ kd then the test sample is determined to
be out-of-class. IfCR,T > kd andTd ≥ dd, then the test
sample is determined to be out-of-class. IfCR,T > kd and
Td < dd then the test sample is determined to be in-class.
This process is expected to produce the most realistic results
if an appropriate target sensor noise model is incorporated.

3. EXPERIMENTAL SETUP

A 12 class hyperspectral data set was used with NASAFS
in comparison to GRLVQI, Relief F, and the Bhattacharyya
methods. NASAFS is implemented using a bin size of10nm,
which is the average bandwidth of an imaging collection sys-
tem in the field; for example the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), which has a10nm nominal
channel bandwidth. The data was collected by a hand held
reflectometer with a sampling interval of1nm (as such, spec-
tral mixing is not considered at this time). In order to present
a fair comparison, the data used in the other feature selec-
tion methods was re-sampled to10nm binsvia an averaging
technique. Relief F, GRLVQI and the Bhattacharyya methods
were computed using a three-fold cross validation.

NASAFS used ten reference class samples to obtain the
covariance threshold used in the heuristic, and generated
the feature sets based on one sample from each of the other
classes. For NASAFS, we divided the spectral domain into
seven equal sub-regions for the feature spreading aspect. For
all the methods, no more than six features were allowed to
be in the feature set (this selection is chosen arbitrarily for
computational considerations). To determine the accuracyof
the chosen feature sets, the MED and the CoDeM presented
in this paper were used. Both of these methods were com-
piled using a range of noise power added to the test signals.
The noise powers used were related to the average noise
levels of a field imaging system. Since the Bhattacharyya,
Relief F, and the GRLVQI produce global feature sets, the
NASAFS method (which produces pairwise feature sets) was
implemented in a pairwise manner with the MED and the
results for each class were averaged to obtain a single global
accuracy measure. Since the CoDeM is set up in a pairwise
manner, the results of the feature sets from each of the dif-
ferent methods are averaged to get single global accuracy
results.

4. RESULTS AND CONCLUSION

Figure 2 shows representative samples for the 12 classes used
in this experiment. NASAFS produced discriminative feature



sets with a low correlation value. Figure 3 shows the hyper-
spectral signal for80% Polyester20% Rayon blend with the
respective feature subset coefficients for the different feature
selection methods. Visually, it is seen that the features ofthe
feature subset denoted by NASAFS are spread over the refer-
ence signal, whereas the feature subsets of the other methods
tend to be close together. The correlation matrix of the datais
used to determine the correlation coefficient for each feature
subset of each feature selection method as shown in Table 1.
The single correlation coefficient value for each method was
obtained by averaging the correlation coefficients for all com-
binations of each feature within each feature subset. NASAFS
produces less correlated feature subsets than the other meth-
ods.
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Fig. 2. (a) Representative samples from the 12-class textile
data set used in the evaluation of NASAFS. (b) Results of
the detection/classification methods for each feature selection
methodology using CoDeM (solid line) and MED (dashed
line). Each feature selection method is represented with a
different color: Relief F (blue), NASAFS (red), GRLVQI
(green), and Bhattacharyya (black).

Figure 2 shows the average accuracy of the feature se-
lection methods employed in this work as compared with
the MED and the CoDeM. NASAFS classification results
are better than the other methods when using CoDeM, and
comparable to GRLVQI with the MED process. Currently,
a global feature set for NASAFS is being sought after that
shows promise. Presently, the feature spreading function of
NASAFS produces much better feature subset from a corre-
lation standpoint. Future work aims at extending the feature
spreading methodology to existing feature selection methods
(e.g.,GRLVQI). It also aims to better define less-correlated
sub-regions, for example using the correlation matrix of the

Method Mean Corr Coef
Relief F 0.9955

GRLVQI 0.9025
Bhattacharyya 0.9998

NASAFS 0.6402

Table 1. Average correlation coefficients.
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Fig. 3. Hyperspectral signal for80% Polyester20% Rayon
blend with the respective feature set coefficients for the dif-
ferent feature selection methods.

data to define the sub-regions of the signal. Further, adding
more realistic noise, atmospheric effects and accurate re-
sampling of the data for a specific collection imaging system
is currently underway.
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