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ABSTRACT some examples include Relief F and Bhattacharyya methods.

Feature subset selection is a well studied problem in machinThe wrapper method uses a feedback of classification accu-

. : ; : to select the appropriate feature subset; for exangle g
learning. One short-coming of many methods is the selectiolf<Y .
of highly correlated features; a characteristic of hypeesp netic and Best First Search methods. Embedded methods de-

tral data. A novel stochastic feature selection method witﬁermlne a feature subsets’ “goodness’, and contlnual_ly up-
three major components is presented. First, we present tes the_feature s_ubs_etto produce a better feature suttiset u
optimized feature selection method that maximizes a heuri§ € stopping criterion is met [1]. Examples of these methods

tic using a simulated annealing search which increases e C4.5 [1] and generalized relevance learning vector-quan

chance of avoiding locally optimum solutions. Second, We’gzaﬂzn |mtpr)]r0&/e$[i (.GRLVtQhI) ([_jz]é Allbi)f'thedpfrewotuhsly men- ii
exploit local cross correlation pair-wise amongst classes loned methods train on the data obtained from the a specific

interest to select suitable features for class discririonat  'N'a9'Nd system and provide feature subsets based on the res-

Third, we adopt the concept of distributed spacing from theOIUtIon of that imaging system.
multi-objective optimization community to distribute feees The resolution of typical lab collected hyperspectral data
across the spectrum in order to select less correlated&satu is on the order of a magnitude better than most imaging sys-
The classification performance of our semi-embedded featutems in the field. The discriminating ability of the feature
selection and classification method is demonstrated on a 18ubsets produced from higher resolution lab data are tjpica
class textile hyperspectral classification problem un@er s better than what might be obtained with lower spectral resol
eral noise realizations. These results are compared wish a vtion fielded systems. The feature selection method pregente
riety of feature selection methods that cover a broad rafige dn this paper allows for the unique ability to select feasure
approaches. realizable by a low resolution imaging system based on the
high resolution laboratory data, allowing for a more infedn
selection of features resulting in excellent classificatz-
curacy. This is accomplished by adjusting an analysis win-
dow over the laboratory data to accommodate the resolution
1. INTRODUCTION capability of the target imaging system used to collect the
. .. _hyperspectral data. This novel methodology incorporates a
Hyp_erspectral d_ata pr0\_/|des an abundance O_f spec_:tral- Info§tochastic search approach (simulated annealing seaych al
mation per spatial location; however, processing this e i1 [3]) with a heuristic that guides the search. The resul

data can be computationally time intensive. This comput s a non-greedy local search of the spectral domain that pro-

Index Terms— Hyperspectral, feature selection, detec-
tion, dimensionality reduction

ingful feature subsets from hyperspectral data, their i@ogu
depends on the ability to retain important classificatidorin
mation. One of the goals of feature selection is to produce a fea-
Feature selection methodologies are classified into threigire subset that is not correlated, where correlation atdi

types: filter, wrapper, and embedded [1]. The filter methodedundancy. Redundant features are often noted as adding
incorporates properties of the data to select a featureesubsnothing new to the discriminating capability of the feature

_ — subset and are typically considered unnecessary [4]. The
i The views expressed in this paper are those of the authorandtde- — fo4110 selection method presented in this work produces
ect the official policy or position of the United States Amr€e, Department
of Defense, or the United States Government. This work issmpen by the & Iess-redundapt/le_sst-co_rrelated fe_a_ture_ subset thabrdem
Air Force Research Laboratory, Sensors Directorate. strates good discriminating capability in the presence of

algorithm incorporated into the search.




noise. This is accomplished by incorporating the distedut across the spectrum is accomplished by the method presented
spacing concept, typically used to solve Multi-Objectiy® o by Coello Coelloet.al. [5] and proposed by Deb and Srini-
timization problems, as outlined by Coello Coed#ibal.[5], vas [6], and is accomplished by computing the measure of
and Deb and Srinivas [6]. distributed spacing:) [6] which is the value placed on the

A correlation-based detector is specified that complimentdistribution of the features in the feature subset accarttin
the proposed feature selection methodology. The capabilitthe division/sub-regions of the spectral bands:
of the detector is compared to that of the Minimum Eucle-
dian Distance (MED) classifier with the features selected us Kl (m — ni>2

ing GRLVQI, Bhattacharyya, Relief F and the feature selec- L= Z
i=1

1)

0;
tion method presented in this work. The result of the detec-
tOI’/ClaSSifier iS ShOWﬂ over a I’ange Of additive Wh|te GalBSI Whereq is the number Of Sub_regiongig_ 1) that the Signa'

noise realizations. is divided into, n; is the actual number of selected feature
points in thei*” sub-region of the signal(s; is the expected

2. PROPOSED FEATURE SELECTION/DETECTION number feature points in th&" sub-region of the signal (if
sub-regions are unequal, a weighting must be applied), and

The Non-correlated Aided Simulated Annealing Feature Ses? is the variance of the selected feature points ofithesub-

lection (NASAFS) method selects features in a pairwise manregion of the signal. The variance is calculated similaha t

ner, where the results of each pair is combined into a datgaba# [6]:

of ‘distinguishable features’ for discriminating the reface _

class from all other classes. The database is then used by the o? =7y (1 — m) fori=1,2,....,q 2

detection algorithm to categorize unseen data samples. Al- P

though Simulated Annealing (SA) can be processing intenwhere P is the total number of spectral bands. The num-

sive, itis not a limiting factor in the processing of the @&  ber of sub-regionsg) of the signal is user defined, but could

set. be determined in some other manner such as the correlation
structure of the data. The best (optimal) less-correlatee c

2.1. Feature Selection Methodology based on the number of allowed features in the feature subset
and the number of sub-regions over the signal, is calculated

The proposed NASAFS works as follows: This best case value @.,if the feature subset is to contain six

Hgatures, then for the case in Fig. 1, there would be two fea-
tures per sub-region) is used as a baseline when determining
the actual correlation of the selected feature subset. Wifea
subset that meets the desired percentage of optimality (use
'defined) is allowed to proceed to the heuristic function ef th
fgature selection algorithm. Otherwise, the previoustked
feature must be returned to the open list and a replacement
ture is randomly picked and the process repeated.

1. Train on the reference class samples to determine t
covariance threshold] for the heursitic function.

2. Randomly select a subset of feature ‘bir€y( 1), en-
suring optimal distribution across the signal domain
and then evaluate them with the heuristic.

3. The heuristic evaluates the feature set and returns
value Eqn. 3 to guide the SA search.

4. A feature ‘bin’ in the feature subset is replaced Withfea_l_h heuristi | based ial f
a random pick of the remaining bins in a manner that e heuristic retums values based on a sequential set o

maintains the distributed spacing requirement, then thgalculatlons. The cross covanané%T 's calculated us”
new feature subset is evaluated by the heuristic. ing a feature subset of the reference class corresponding to

5. The value returned from the heuristic is used to detert-he fefjure guljaset ?]f the wge; classg(; R1|(A, C’FE’ I)l
mine if the new subset is either kept or discarded. o (A, C,E,I), whereT is the target class, Fig. 1).

6. Adifferentfeature ‘bin’in the feature subset is seldcte Tr}|s value is comparedfto the covariance thresfold If
gR,T > k, then (( — Cy 1) is returned per Eqgn. 3, oth-

?Cnudrr(satr:et?; ;?;;(tjhrr]%l:gg;szrt?apﬁ]?;zdsén;sl)f:onvergencerwise the autocorrelatiq’riRQ) of thg bins of each class
(reference and target) is accomplished and the absolute
NASAFS trains on the reference class samples by findingistance of these valuesy,, is computed whereV, =
the worst cross covariance of every combination of the sam®.(71(A, C, E, I) — R, (R:1(A,C, E,I))|. The result is
ples for each corresponding bin of the reference claes ( compared to a distance threshdll (which is updated every
Ri(A) with Ry(A), Ri(A) with R3(A) etc, where in the time this threshold is exceeded) to determine the apprigpria
form R,(b), R is the reference class, is the sample, and Vvalue to return. The heuristicis expressed as:
b is a specific bin, see Fig. 1). This covariance value be- s o
comes the threshold:) used in the heuristic in Eqn. 3. A 1=Cpyp HCpr 2k
less-correlated feature subset is ensured by distribntmdy h=41 if C};T <kandNg—D; >0, (3)
selected features across the spectrum. Feature distributi 1-— CIJ;’T if CIJ;’T < kandNyg; — D; < 0.
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lute distance of the autocorrelation of the non-noisy bihs o
o ererence Signa the reference class to the noisy bins of the reference class.
wpee, : The cross covarianc€r r is calculated for the mean of the
’ A PN non-noisy reference class bins to the mean of the noisy test
class bins.T,; is the absolute distance of the autocorrelation
\\ ERU L of the non-noisy reference class bins to the noisy test class
i o bins. If Crr < kq then the test sample is determined to
be out-of-class. 1ICrr+ > kg andT; > dg, then the test
\\_\~ 1 sample is determined to be out-of-class.Cl¢ r > k4 and
' Ty < dg then the test sample is determined to be in-class.
e e sm e This process is expected to produce the most realistictsesul

) ) — o ) ) if an appropriate target sensor noise model is incorporated
Fig. 1. Example of a signhal segment divided into bins and sub
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Reflectance

regions. Here, black (solid line) is the reference signal an 3. EXPERIMENTAL SETUP
red (dashed line) is the test signal, 1 ...3 are the subregion
and A ...l are the bins. A 12 class hyperspectral data set was used with NASAFS

in comparison to GRLVQI, Relief F, and the Bhattacharyya

Since the heuristic uses features that are bins of the spedeth0ods. NASAFS is implemented using a bin sizéfm,
tral domain, the user must define a bin size, typically set thVh'Ch Is the average bandwidth of an imaging collection sys-

the bandwidth of the targeted collection system, used for thtem in the field; for example the Airborne Visible/Infrared

detection task. This bin size is used to parse up the signain@ging Spectrometer (AVIRIS), which has@nm nominal

an example of bin size and sub-regions of the spectral band@annel bandwidth. The data was collected by a hand held
is shown in Fig. 1. The feature selection algorithm select£€flectometer with a sampling interval bim (as such, spec-

a random (specified by the user) number of features as tHE MiXing is not considered at this time). In order to prése
starting feature subset. The feature subset is evaluatéueby a fair comparison, the data used in t.he c_)ther feature_ selec-
heuristic (Eqn. 3), which ranks the feature subset as a groutiOn methods was re-sampled10nm binsvia an averaging
Each feature, within the original feature subset, is readac ecnnique. Relief F, GRLVQI and the Bhattacharyya methods
by a randomly selected feature, one at a time and sequgntialf'€"® computed using a three-fold cross validation. ,

from the open list of features. Each feature replacement cre NVASAFS used ten reference class samples to obtain the
ates a new feature subset that is evaluated by the heuffstic. covariance threshold used in the heuristic, and generated

the new feature subset is kept, according to the SA algorithn® feature sets based on one sample from each of the other
the feature that it replaced is put back on the open list.df th ¢lasses. For NASAFS, we divided the spectral domain into

new feature subset is not kept, the replaced feature isregsto SEVeN equal sub-regions for the feature spreading aspert. F

to the feature subset and the new feature is placed on the op@h the methods, no more than six features were allowed to
list. be in the feature set (this selection is chosen arbitradty f

computational considerations). To determine the accunécy
2.2. Detector Methodology the chosen feature sets, the MED and the CoDeM presented

. . . in this paper were used. Both of these methods were com-
The correlation detection method (CoDeM) is based on th iled using a range of noise power added to the test signals.

principals of the feature selection method presentedegarli The noise powers used were related to the average noise

Due to the pairwise process of NASAFS, CoDeM also P€Mevels of a field imaging system. Since the Bhattacharyya,

forms a pairwise detection that labels a sample as either s elief E and the GRLVQI produce global feature sets, the

class or out-of-class. If the sample is out-of-class, n@oth \ s ars method (which produces pairwise feature sets) was
information is known, just that it is not the same as the ref-

erence class. CoDeM uses the average value of each bin tjmplemented In a pairwise manner with the MED and the
) o 9 T fsults for each class were averaged to obtain a singlelgloba
its calculations. Thus, for a feature subset consistingof s

) . accuracy measure. Since the CoDeM is set up in a pairwise
g:;zg;:; \I/\IQUSQFS, the feature subset of CoDeM will ha\/emanner, the results of the feature sets from each of the dif-

. : . ferent methods are averaged to get single global accurac
CoDeM determines a covariance threshokg)(using g 9 ge g y

. S . results.
noisy reference data, where the noise is a fraction of the

noise power of the test samples. It determines the worst

cross covariance of every combination of the samples for 4. RESULTS AND CONCLUSION

each corresponding bin of the feature subset of the referenc

class (e., R1(A) with R2(A), R1(C) with Ry(C), etc). A Figure 2 shows representative samples for the 12 classés use
distance thresholddf) is determined by finding the abso- in this experiment. NASAFS produced discriminative featur



sets with a low correlation value. Figure 3 shows the hypt
spectral signal foB0% Polyesterr0% Rayon blend with the
respective feature subset coefficients for the differeauiie

[0 NASAFS Coef
O Relief F Coef
0.9F 80 poly 20 rayon woven|

selection methods. Visually, it is seen that the featurabef e O Snatacharyycoe
feature subset denoted by NASAFS are spread over the re osl

ence signal, whereas the feature subsets of the other nsetl

tend to be close together. The correlation matrix of the dat: o7F ¢ &

used to determine the correlation coefficient for each feati
subset of each feature selection method as shown in Tabl
The single correlation coefficient value for each method w
obtained by averaging the correlation coefficients for athe
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binations of each feature within each feature subset. NASA 0al ;
produces less correlated feature subsets than the other v
ods. o3r
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Fig. 3. Hyperspectral signal fo80% Polyester20% Rayon
blend with the respective feature set coefficients for tlie di
ferent feature selection methods.

data to define the sub-regions of the signal. Further, adding
more realistic noise, atmospheric effects and accurate re-
sampling of the data for a specific collection imaging system

01
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(a) Data (b) Accuracy is currently underway.
Fig. 2. (a) Representative samples from the 12-class textile
data set used in the evaluation of NASAFS. (b) Results of 5. REFERENCES

the detection/classification methods for each featuretele
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Table 1. Average correlation coefficients.



