
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— Investigating insider threat cases is challenging

because activities are conducted with legitimate access that
makes distinguishing malicious activities from normal activities
difficult. To assist with identifying non-normal activities, we
propose using two types of pattern discovery to identify a
person’s behavioral patterns in network data. The behavioral
patterns serve to deemphasize normal behavior so that insider
threat investigations can focus attention on potentially more
relevant. Results from a controlled experiment demonstrate the
highlighting of a suspicious event through the reduction of events
belonging to discovered patterns.

Index Terms—behavior, insider threat, pattern recognition
	

I. INTRODUCTION

nsider threat involves malicious activity conducted with
legitimate access [1], [2]. Legitimate access may be granted

to an individual or impersonated by another entity [3], but
because of the legitimate access, the nefarious activities are
difficult to distinguish from normal actions until damages
have occurred [4]. Upon discovering damages, an
investigation then attempts to identify and analyze relevant
fragments of computer data to piece together a probable
explanation, or narrative, of events that transpired. This task is
increasingly challenging because of the ever-increasing
volume of digital data. Tools and technologies are necessary
to efficiently triage data to find the relevant data items.

This paper proposes discovering patterns in user web
activity to distinguish between accesses that conform to
normal behavior from those that do not. The intent is that an
investigation of an insider threat case can start with reviews of
accesses that are inconsistent with a user’s typical behavior
patterns. The pattern discovery is an individualization process
used to identify the anomalous events, during an investigation
of an insider threat case. This is different from insider threat
detection, which attempts to identify an insider threat actor
from a set of actors [3]. The patterns from the pattern

A. C. Lin and G. L. Peterson are both at the Department of Electrical and
Computer Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, OH 45433 (e-mail: alan.lin@afit.edu and gilbert.peterson@afit.edu).

The views expressed in this dissertation are those of the author and do not
reflect the official policy or position of the United States Air Force,
Department of Defense, or the United States Government. This material is
declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

discovery are not used to uniquely identify the individual
because the patterns may not be unique to only a single
individual.

Web usage is contained in packet capture (PCAP) files.
PCAP files contain low-level network frames of how the
computer performs the underlying mechanics to make
networked communication possible —determining the actions
taken by the user that generated the frames takes technical
expertise. To automate this task, this paper presents algorithms
that extend alignment and bigram pattern discovery algorithms
to identify behavior patterns in web usage data. Alignment
pattern discovery leverages the Needleman-Wunsh [5]
pairwise alignment algorithm from the bioinformatics domain,
guided by a clustering algorithm that accounts for both content
and edit distance similarity. The bigram pattern discovery uses
a modified incremental activity recognition algorithm [6] that
accepts patterns based on statistical expectation of occurrence.
The two algorithms are complementary: the alignment pattern
discovery aims to find patterns consistent across sessions
while the bigram pattern discovery incrementally expands
adjacent activities to find larger patterns.

II. BACKGROUND

One area of research into insider threat detection leverages
normal user baseline behaviors to perform anomaly detection.
These approaches leverage the assumption that behavioral
patterns are detectable from a person’s behavior to build
models of the users normal or abnormal behaviors.

A. Insider Threat Detection with Behavior Profiles

In Salem, et al.’s [3] survey of insider attack detection
research, the authors identified web user profiling as a
potential means to detect insider threat instances of stolen or
borrowed credentials. The method used support vector
machines the features of IP address, time of access, HTTP
request method, and transfer size to detect instances of stolen
credentials.

Liu, et al. [7] monitors system calls to leverage the benefit
of complete monitoring and tamper-resistance. The authors
attempt n-gram feature representation, citing successful
application in external threat detection. However, they did not
achieve similar results using n-gram features for insider
threats. They attribute the difference in success due to the lack
of change in application response from an insider using proper
access rights, versus an outsider attack that does not.

Parveen and Thuraisngham [1] use unsupervised learning to

Activity Pattern Discovery from Network
Captures

Alan C. Lin and Gilbert L. Peterson

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

address unlabeled log data in the insider threat problem
domain. Due to proper authorization in insider threat, log data
is unlabeled because it does not readily show differences
between normal and abnormal entries. Their work is similar to
Lane and Brodley [8], which uses user UNIX command logs
in anomaly detection. Both works assume that daily,
consistent sequences are evidence of normal behaviors and use
them to identify threats as significant excursions from the
norm.

Legg, et al. [9] detect insiders through activity comparisons
between the current daily observations, previously recorded
observations, and observations from others in the same role.
Their work used the CMU-CERT data, which included login,
USB device, e-mail, web, and file access logs and synthetic
scenarios that included similar fields. The observations are
profiled in a tree-structure that is consistent between all users
and roles to enable efficient comparison. Similarly, previous
recorded behaviors are included in the “normal” profile, unless
an attack was detected.

B. Behavior Profiles from Web Usage

Yang [10] created user profiles that describe repeating
elements in a user’s activity. The recurring nature of behavior
was found in repeated visits to certain sites across sessions,
repeated visits to the same site within a session, and the
pattern of site visits. A session is defined as a continuous
period of user web activity. Yang’s support-based profiling
technique provided the best results, where support was
calculated as the number of sessions containing a discovered
behavior pattern divided by the total number of sessions of a
given user. Against a data set of 100 users, she found support-
based profiling could achieve as high as 87% identification
accuracy, if given a sufficient number user sessions and a
large sliding window size to mine patterns. In cases with only
a small sample of users, lift-based profiling, which is the
frequency of a pattern within a user’s session divided by the
frequency of the pattern across all users, performed better.

 Banse, et al. [11] performed behavior-based tracking
using a Multinomial Naïve Bayes (MNB) classifier on
Domain Name System (DNS) queries. An MNB classifier was
selected for its computational complexity advantage over more
advanced classifiers, such as support-vector-machines (SVM).
Their goal was to identify the same user across multiple
sessions in a data set that included 2100 users and where each
user was represented by dynamic IP addresses, refreshed after
a fixed amount of time. In cases where an IP address was
classified as multiple users, the cosine similarity metric
resolved the ambiguity. The combined MNB and cosine
similarity model achieved as high as 88.2% identification,
finding that user behaviors were stable provided sufficient
data for a characteristic pattern to emerge.

McDowell [12] compared destination IP and DNS query
methods of behavior modeling for anomaly detection. The
data set was collected from a commuter military university to
mimic traffic behavior from a government or corporate office.
Their results using Naïve Bayes and K-Nearest-Neighbor
classifiers found that DNS query performed better than

destination IPs, but in general, did not achieve identification
rates as high as either Yang [10] or Banse, et al [11].

The related area of research of anonymizers and realistic
web traffic generation is motivated by evidence that web
usage behavior is sufficient to identify a person. Banse, et al.
[11] provided a disclaimer that some queries, despite using
pseudonyms, still leak personally-identifiable information.
Song, et al. [13] similarly discovered statistical fingerprints of
behavior that reveal the host. The fingerprints are leveraged to
classify individuals into groups, obfuscating the individual.
The behavioral signature of the group is then used to generate
representative network traffic without comprising personally
identifiable information.

III. METHODOLOGY

The insider threat context for the proposed approach is
where the forensic examiner is attempting to find the
incriminating activities within the suspect’s web usage
activity. The overall process, shown in Fig. 1, begins with a
preprocessing step that categorizes the sites visited to produce
a linear sequence of events. The event sequences are necessary
to perform the pattern discovery. The pattern discovery is an
individualization process because the event patterns
correspond to the individual’s behavior. The data reduction
step leverages this knowledge to deemphasize events that are
attributable to the individual’s typical behavior, leaving the
unexplained events for further forensic examination.

Fig. 1. Methodology Overview.

A. Pre-processing: Network data as a timeline sequence

The preprocessing step has several purposes. The first is to
collapse multiple sequential visits to the same site. The effect
of this collapse is that the ordering is the salient feature, rather
than the duration of site visit. Site visit duration may be
difficult to capture given the statelessness of web traffic. That
is, it is difficult to know from just web traffic data whether a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

user left the terminal, or is conducting activities that do not
generate network activity.

 Second, site visits from secondary links are removed, such
as those for advertisements. These web activities are based on
the site’s behavior and not actually reflective of the user’s
behavior.

Third, the preprocessing categorizes the sites as a reflection
of the user goal or target. For example, visits to www.cnn.com
and www.foxnews.com are both categorized as a news site
visit. This can be done through organic keywords that reveal
the category of websites or through a search of commercial
databases, such as BlueCoat (www.bluecoat.com) or
TrustedSource (www.trustedsource.org).

B. Pattern Discovery

The categories extracted from preprocessing become
terminals in an activity sequence. From there, the activity
sequences go through two kinds of pattern discovery to
extract a user behavior pattern. The top-down approach uses
alignment-based pattern discovery to identify overarching
trends across sessions. Examples of overarching trends include
Yang’s example [10] where a person always starts a session
by going to cnn.com. The bottom-up pattern discovery uses
bigram-based pattern discovery, where activities that
frequently occur together, in order, are considered patterns. In
contrast to alignment, bigram pattern discovery starts locally
and expands the patterns outward.

1) Alignment-based Pattern Discovery

The alignment-based pattern discovery uses the Needleman-
Wunsh algorithm [5], [14] for pairwise alignment of two
sequences. The Needleman-Wunsch algorithm, shown in
Algorithm 1, requires a scoring system that rewards aligned
symbols and penalizes gaps and mismatches.

A score matrix and a corresponding traceback matrix (lines
1 and 2) record the alignment path that determines aligned
positions and insertions of necessary gaps. The algorithm has
an O(mn) time and space complexity, where m and n are the
length of the two sequences. Needleman-Wunsh progressively
builds a multiple sequence alignment from a series of pairwise
alignments as a performance consideration because
simultaneous multiple sequence alignment algorithms incur an
exponential computational complexity of O(2knk), where k is
the number of sequences [15, Ch. 6]. The pairwise progression
incrementally incorporates additional sequences to past
alignments and back-propagates gaps into previous alignments
when gaps are necessary to align the newest sequence. The
trade-off of using pairwise alignment is that the overall
alignment is sensitive to the order in which sequences are
incrementally aligned due to the subsequently added gaps. To
minimize gaps, a similarity matrix using clustering first
identifies most similar sequences in a greedy approach based
on a combined similarity measure as the arithmetic mean of
content distance and edit distance. The reason why two kinds
of similarity measures are used is to capture different aspects
of similarity.

Algorithm 1: Needleman-Wunsh Alignment
Input: seq1 [1..m] : m-length string sequence
Input: seq2 [1..n] : n-length string sequence
Input: seq2 [1..n] : n-length string sequence
Input: init_penalty : initial misalignment penalty, ≤ 0
Input: gap_penalty : penalty for introducing gap, ≤ 0
Input: match_reward : reward for alignment, ≥ 0
Input: mismatch_penalty : penalty for non-alignment, ≤ 0
Output: align1 [1..x] : alignment of seq1 to seq2, x ≥ m
Output: align2 [1..y]: alignment of seq2 to seq1, y ≥ n
Output: alignment_score : higher score is greater alignment

1 allocated score_matrix[m+1][n+1]
2 allocate traceback_matrix[m+1][n+1]
3 initialize alignment_score = 0
4 for i = 1 to n
5 score_matrix[i][0] = i * init_penalty
6 traceback_matrix[i][0] = “up”
7 end
8 for j = 1 to m
9 score_matrix[0][j] = j * init_penalty

10 traceback_matrix[0][j] = “left”
11 end

12 for i = 1 to n
13 for j = 1 to m
14 int s
15 if (seq1[j-1] == seq2[i-1] then s = match_reward
16 else s = mismatch_penalty
17 int diag = score_matrix[i-1][j-1]+s
18 int up = score_matrix[i-1][j]+gap_penalty
19 int left = score_matrix[i][j-1]+gap_penalty
20 score_matrix[i][j] = max(diag,up,left)
21 traceback_matrix[i][j] = max(“diag”, “up”, “left”)
22 end
23 end

24 i = n; j = m
25 while ([i][j] != [0][0])
26 if (traceback_matrix[i][j] == “diag”) then
27 align1.prepend(seq1[j-1])
28 align2.prepend(seq2[i-1])
29 i=i-1; j=j-1
30 else
31 if (traceback_matrix[i][j] == “left”) then
32 align1.prepend(seq1[j-1])
33 align2.prepend(“-”)
34 j=j-1
35 Else
36 align1.prepend(“-”)
37 align2.prepent(seq2[i-1])
38 i=i-1
39 end
40 end
41 end
42 assignment_score = score_matrix[m+1][n+1]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Content similarity takes into account the bigram patterns,
even if they are not aligned [6]. Content similarity is a
combination of precision and recall, which are defined:

1 2

1

bigram() bigram()
 =

bigram()

v v
Precision

v


 (1)

2

1 2bigram() bigram()
 =

bigram()

v v
Recall

v

 (2)

2

Precision Recall
Content Similarity

Precision Recall


 


	 	 ሺ3ሻ	

	
The bigram(v) function returns the set of bigrams from the

sequence, v, and the magnitude of the intersection that is in the
numerator of equations (1) and (2) is the number of common
bigrams, counting duplicates.

Edit distance takes into account similarity when there is
alignment, even though bigram patterns are not preserved. To
produce a result that can be used with content similarity, the
edit distance is normalized by the length of the longer
sentence. This way, both content and edit distance similarity is
on a range between 0 (completely dissimilar) to 1 (identical).
	

      
    

1 2 1 2

1 2

max length , length edit distance ,

max length , length

Edit Distance Similarity

v v v v

v v



 (4)

 CombinedSimilarity

ContentSimilarity EditDistanceSimilarity




 (5)

 Each cell in the similarity matrix is populated with

similarity measures such as edit distance normalized to the
longer sequence length. Then, the ordering begins with the
two-most similar sequences and adds the remaining most
similar sequence until the ordering includes every sequence,
creating a guide-tree. Pair-wise alignment then uses the
ordering to determine the incremental sequence of alignments.

2) Bigram-based Pattern Discovery

Bigram-based pattern discovery identifies patterns bottom-
up, where activities that occur together in the same order form
a pattern. The bigram-based pattern discovery algorithm,
shown in Algorithm 2, is a modification of Peng, et al.’s [6]
work in activity recognition. Two adjacent activities form a
bigram, but a bigram is only accepted as a pattern if the
bigram’s joint-occurrence frequency is larger than the
bigram’s expected marginal frequency, tested using the chi-
square test (line 27) on each bigram. Calculating chi-square in
equation form shorthand is possible because there are only two
items in the test.
 Peng, et al.’s [6] attempt to identify similarities between
bigrams in calculating significance. This was removed

because these instances can be better captured under the
alignment-based algorithm.

Another modification was made to the accept bigrams that
occur exclusively together as significant. In these instances,
line 27 will produce a divide-by-zero error. The
implementation accepts these bigram if they occur over a user-
defined frequency, despite not passing the chi-square test. This
modification was done to better match the intent of the pattern
discovery.

Algorithm 2: Bigram Pattern Discovery
Input: W [1..n] : list of n sequences
Input: m : merge threshold, ≥ 0
Output: VL[0..p] : list of combined activities at level L
Output: WL : W rewritten with VL at each level

1 initialize L=0
2 initialize R : map of bigrams (1st symbol, 2nd symbol)
3 V0 = terminals in W; W0 = W;
4 do
5 L++
6 (WL, VL) = collocation(WL-1,VL-1,L,R)
7 until VL is empty

8 function collocation(WL-1,VL-1,L,R)
9 initialize jft : stores frequency of the bigram

10 initialize mft1: stores frequency of first symbols
11 initialize mft2: stores frequency of second symbols
12 foreach bigram in WL-1
13 increment bigram count in jft
14 increment bigram’s 1st symbol count in mft1
15 increment bigram’s 2nd symbol count in mft2
16 end

17 foreach bigram in jft
18 T = total number of bigrams in jft
19 A = bigram count in jft
20 E = bigram’s 1st symbol count in mft1
21 G = bigram’s 2nd symbol count in mft2
22 C = E - A
23 B = G - A
24 F = T - E
25 H = T -G
26 D = F - B
27 chi = T*((A*D)-(B*C))2 / (G*H*E*F)
28 if (chi ≥ m)
29 add bigram to VL
30 add bigram to R
31 end
32 rewrite WL in VL
33 return (WL,VL)

3) Assumptions
We assume that the user does not interfere with the

observation process and does not deliberately attempt to defeat
the recognition system. Banse, et al. [11] identify some
measures that complicate behavior-based tracking.
Anonymizers like Tor obfuscate the destination IP address,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

therefore preventing classification of destination IP site.
However, using anonymizers may be itself a suspicious
behavior so detecting Tor traffic satisfies the goal of
identifying suspicious behavior. Caching may also complicate
sequence construction if they do not produce network traffic in
the terminal assignment pre-processing step. Dynamic IP
addresses are problematic if a single user is confused as
multiple users because it decreases the sampling for behaviors.
Range Queries, which hides user queries with random dummy
queries, adds significant noise to pattern discovery.

The chi-square test will reject bigrams of symbols that exist
only as a bigram because too many variables in the equation
are zero. However, if the bigram frequently appears in joint
frequency table, then rejecting the bigram produces counter-
intuitive response based on the intent of pattern discovery.
Thus, in addition to checking for divide by zero values, the
chi-square test checks for situations for this occurs.

The implementation retains a history of bigram
combinations at each level in VL that makes the hierarchy
evident. The highest level WL define the S productions in the
inferred grammar.

Bigrams are sensitive to the rewrite process. For instance, if
AB and BC are both significant bigrams, ABC can be written as
either (AB)C or A(BC). Using alignment-based pattern
discovery in concert mitigates this effect.

IV. EXPERIMENT

Greitzer and Ferryman [16] identified a lack of appropriate
data and ground truth in developing and evaluating insider
threat tools. As a pilot study, we captured a user’s network
traffic data over the course of three days. Truth data was
recorded so that the actual user browsing sequence was
known. Wireshark’s [17] dumpcap utility was used to capture
the packets.

A synthetic insider threat inject scenario asked the user to
visit www.HSBC.com during the middle of the second
session. This site was selected because it is not suspicious site
based on the URL (TrustedSource categorized the link as
minimal risk with a banking web category). This was done
to mirror the fact that no explicit policy should exclude the
user from performing this action and that the user has
legitimate privilege to perform this action. However, the act of
visiting this banking website interrupts the user’s normal
habits on when they typically carry out banking tasks with
shopping activities. The HSBC visit is also not uniquely
identifiable based on visit frequency, as there are other sites
only visited once.

In this regard, this scenario considers both the normal user
behavior, as well as the malicious behavior to be detected [4].
Similar to the scenarios generated in [9], using a banking site
as the anomalous observations fits an insider threat narrative
where the actor is confirming payment after completing some
kind of malicious activity. The injection testing approach,
similarly used in [16] and [18], also addresses the privacy
concerns of the captured material while ensuring presence of
known insider threat data.

Two runs were conducted on this scenario to examine
sensitivity to the preprocessing step that generates the activity
sequences. The first run uses a set of five activities while the
alternate run increased the activity set by one to better capture
the webmail URL. In both cases, the injected insider threat
activity survives the reduction process for further
investigation.

A. Initial Run with Five Activity Terminals

To examine reduction based on individualization in pattern
discovery, the process deemphasizes events attributable to a
discovered pattern. With the injected scenario, the site visit to
www.HSBC.com should not be deemphasized.

Fig. 2 shows the activities from the three sessions, t1, t2,
and t3, consisting of 41 total activities. The red highlights the
scenario injected event.

The sessions do not include activities from ad services,
typically indicated by the referred-from field in the stream
because they are not reflective of user-driven activities. The
sessions also do not include activities caused by background
services such as antivirus updates or operating system updates
for the same reason.

The pre-processing step uses the IP address metadata and
organic keywords retrieved from ipaddress.com as well as
McAfee’s Threat Intelligence database at
www.trustedsource.org to classify the different activities into
terminals. Fig. 3 shows the sequences of events consisting of
five categories: edu (education), socnet (social
networking), news, shopping, and banking.

Fig. 2. User activities from three sessions: t1, t2, t3. The red highlights the
scenario injected event that reduction process should not eliminate.

Fig. 3. Sessions rewritten by categories.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

 The alignment-based inference process identified activity
patterns that occur across the all of the sessions, shown in Fig.
4. The events denoted in blue are those that occur similarly
across t1, t2 and t3. The gray events denote breaks between
aligned events.

Fig. 4. Alignment of the three sessions. The blue events correspond to
alignments. The gray dashes correspond to breaks between aligned events.

Events in the sessions that correspond to the blue events in

the alignment are grayed out in Fig. 5 to show that they are
deemphasized.

Fig. 5. Sessions with aligned symbols deemphasized.

Bigram pattern discovery identifies frequent activity

patterns, focusing on increasingly longer patterns of adjacent
symbols. Deemphasizing these patterns from the sequences in
addition to those deemphasized by the alignment-based pattern
discovery further reduces the number of remaining activities.
Bigram pattern discovery identified the following patterns,
where nested-bigrams are chunked with parenthesis:

shoppingbanking,
socnetnews
edusocnet
socnetedu
newssocnet
(edusocnet)news
(shoppingbanking)socnet
 edu(shoppingbanking)
(socnetedu)(shoppingbanking)
(socnetedu)shopping
(edusocnet)banking

The vocabulary terms signify additional behavioral patterns.

The parentheses indicate a previously merged bigram within
another bigram. Activities that are unexplained by the
alignment are matched against the vocabulary list. Sequences
that appear in the vocabulary list are also de-prioritized,
shown in washed-out green in Fig. 6. The bigram discovery
process is independent of the alignment inference process.
Therefore, the results from the bigram process can reduce the
event sequences on their own. By using both approaches,
activities can be explained away using both methods. An
activity exclude through alignment can still be used as part of
a bigram to exclude activities not explained by the alignment
discovery process. To highlight these occurrences, activities as

part of bigrams that were deemphasized in the alignment step
are relabeled green, but retain the gray circle.

 In comparing results between the two processes, the
alignment included two adjacent activities, edusocnet, that
was also discovered in the bigram inference approach. The
alignment also included another adjacent pair, edu and
shopping, which did not appear on the bigram vocabulary
list. However, edushopping appears in the vocabulary list
three times, under edu(shoppingbanking),
(socnetedu)(shoppingbanking) and
(socnetedu)shopping, marking it as part of other
frequent patterns.

Fig. 6. Sessions after deemphasizing events from discovered alignment and
bigram patterns.

At the point of investigation in Fig. 6, only two activities

remain emphasized across the three sessions that are
unexplained by discovered behavior patterns. These two
activities indicate where to begin the investigation, which
includes the artificially injected event.

B. Alternate Run with a Sixth Activity Terminal

The initial run uses five activity categories in the activity
sequences. This run adds an additional activity terminal to
investigate the sensitivity of the pattern discovery algorithms
on the preprocessing step.

The URL for the webmail activity had an “.edu”
extension and was assigned the edu terminal based on the
ipaddress.com classification. We repeat the individualization
process and obtain a reduction that categorized webmail
activity with a comm terminal, as a better reflection of the
actual activity. This expanded the category size to six. As
expected, increasing the variety of symbols increases the
distance between sequences and this change produced two
clusters: (t1, t2) and (t3). An increase in the number of clusters
means that there is less likely to be a single alignment pattern,
because the alignment pattern from one cluster does not
transfer to other clusters. This is illustrated in Fig. 7, where t3
does not have any activity in gray; all washed out activities in
t3 are due to bigram patterns.

The resulting change is a decrease in the amount of
activities explainable as part of a pattern, leaving five
activities unattributed. Most importantly though, the injected
insider threat activity, denoted in red, remains in the activity
set for further investigation, even with the additional terminal.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

The introduction of the comm terminal also changed the
bigram vocabulary:

shoppingbanking
commsocnet
socnetnews
(commsocnet)banking
(commsocnet)news
socnetedu
((commsocnet)banking)shopping
socnet(commsocnet)banking
edusocnet

Fig. 7. Sessions using six categories. Gray denotes de-emphasis from
alignments. Green denotes de-emphasis from bigrams. The black and red are
remaining events from reduction.

C. Discussion

The motivation for using web usage data is based on
successes in earlier works [10]–[12]. An advantage of the
proposed approach is not needing to define a sliding window
parameter. The alignment-based pattern discovery compares
entire sessions and the bigram-based pattern discovery
iteratively expands a window size until no patterns are found.
The other advantage of the proposed approach is the
preprocessing that aggregates websites of the same type,
reducing sensitivity to dynamic IP assignments which may
treat them as different sites.

With regards to disadvantages, the proposed process
assumes that attacks are preceded by observable events to
indicate future malicious activity [19] in addition to the
supposition that most malicious behavior is anomalous. These
assumptions, however, are still subject to debate within the
insider threat research community. The impact of these
assumptions is that if a suspect does not have a routine
behavior pattern, then the pattern discovery would not find
patterns to inform the reduction process and fail to eliminate
activities for examination.

In addition, web traffic alone may not be sufficient to fully
reconstruct a criminal timeline. For example, the Digital
Forensics Research Conference 2008 scenario [20] included
both packet captures and a memory dump, both of which were
essential to attributing culpability of the crime. This
disadvantage is shared across all insider threat approaches that
only examine one set of features. To address this issue,
Eldardiry, et al. [18] and Legg, et al. [9] propose multi-domain
approaches to insider threat detection. The pattern discovery

methods proposed in this paper, are extensible to incorporate
multiple domains. In the activity recognition domain, Peng, et
al. [6] created a hierarchy to organize multiple sensor
readings, before conducting the pattern discovery to mine
patterns that include activities across sensors. Similarly, a
hierarchy can organize usage activity across multiple domains,
such as file access or log-in activity, though the additional
domains must also employ pre-processing to produce
sequences of discrete symbols.

V. CONCLUSION

Insider threat is challenging to address because the insider
attack uses legitimate access, making it difficult to separate
normal activities from those that are not. This paper proposes
using pattern discovery of network data to identify an
individual’s behavior patterns. With known behavior profiles,
an investigator on an insider threat case can focus on activities
that the actor had authority to perform, but does not conform
to past behavior. The forensic examiner can then focus on a
reduced set of user activities in the investigation. Results on a
controlled lab data set retained the injected anomalous activity
through the reduction process.

For future work, the pattern discovery section relies on
preprocessing to generate activity sequences. Testing this
process on a larger scale will require automating the
preprocessing step, such as those in [21], [22]. The
preprocessing will also need to overcome additional issues
such as networks that use caching, which may require
different classification techniques.

Additionally, pattern discovery also requires further
investigation to determine the set of categories that accurately
represent web activity, yet still produce activity patterns.
Identifying this set requires a data collection of multiple users
over a longer period.

Finally, this approach may be useful in generating data that
mimics usage behaviors, but does not compromise the privacy
of the users in the data collection. To produce research data of
a user’s usage behavior, a generator uses the discovered
patterns to create an artificial web usage log. The generator
reverses the pre-processing step by selecting a site from the
category, a generator can choose from a list sanitized sites that
do not leak personally identifiable information from the source
data collection.

REFERENCES

[1] P. Parveen and B. Thuraisingham, “Unsupervised incremental
sequence learning for insider threat detection,” 2012 IEEE Int. Conf.
Intell. Secur. Informatics, pp. 141–143, 2012.

[2] A. Azaria, A. Richardson, S. Kraus, and V. S. Subrahmanian,
“Behavioral Analysis of Insider Threat: A Survey and Bootstrapped
Prediction in Imbalanced Data,” IEEE Trans. Comput. Soc. Syst.,
vol. 1, no. 2, pp. 135–155, 2014.

[3] M. Ben Salem, S. Hershkop, and S. J. Stolfo, “A survey of insider
attack detection research,” Insid. Attack Cyber Secur. Beyond
Hacker, pp. 69–90, 2008.

[4] R. Mills, M. Grimaila, G. Peterson, and J. Butts, “A scenario-based
approach to mitigating the insider threat,” ISSA Journal, pp. 12–19,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

2011.

[5] V. Likic, “The Needleman-Wunsch algorithm for sequence
alignment,” Lect. given 7th Melb. Bioinforma. …, pp. 1–46, 2008.

[6] H. K. Peng, P. Wu, J. Zhu, and J. Y. Zhang, “Helix: Unsupervised
grammar induction for structured activity recognition,” Proc. - IEEE
Int. Conf. Data Mining, ICDM, pp. 1194–1199, 2011.

[7] A. Liu, C. Martin, T. Hetherington, and S. Matzner, “A comparison
of system call feature representations for insider threat detection,”
Proc. from 6th Annu. IEEE Syst. Man Cybern. Inf. Assur. Work.
SMC 2005, vol. 2005, pp. 340–347, 2005.

[8] T. Lane and C. E. Brodley, “Sequence matching and learning in
anomaly detection for computer security,” in AAAI Workshop: AI
Approaches to Fraud Detection and Risk Management, 1997, pp.
43–49.

[9] P. a Legg, O. Buckley, M. Goldsmith, and S. Creese, “Automated
Insider Threat Detection System Using User and Role-Based Profile
Assessment,” IEEE Syst. J., pp. 1–10, 2015.

[10] Y. Yang, “Web user behavioral profiling for user identification,”
Decis. Support Syst., vol. 49, no. 3, pp. 261–271, 2010.

[11] C. Banse, D. Herrmann, and H. Federrath, “Tracking users on the
Internet with behavioral patterns: Evaluation of its practical
feasibility,” IFIP Adv. Inf. Commun. Technol., vol. 376 AICT, pp.
235–248, 2012.

[12] C. M. McDowell, “Creating Profiles From User Network Behavior,”
Naval Postgraduate School, 2013.

[13] Y. Song, S. J. Stolfo, and T. Jebara, “Behavior-based network traffic
synthesis,” in Technologies for Homeland Security (HST), 2011
IEEE International Conference on, 2011, pp. 338–344.

[14] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins.,” J. Mol. Biol., vol. 48, no. 3, pp. 443–453, 1970.

[15] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics
Algorithms, vol. 101, no. 474. 2004.

[16] F. L. Greitzer and T. A. Ferryman, “Methods and metrics for
evaluating analytic insider threat tools,” Proc. - IEEE CS Secur.
Priv. Work. SPW 2013, pp. 90–97, 2013.

[17] G. Combs, “Wireshark.” 2015.

[18] H. Eldardiry, E. Bart, J. Liu, J. Hanley, B. Price, and O. Brdiczka,
“Multi-Domain Information Fusion for Insider Threat Detection,”
2013 IEEE Secur. Priv. Work., pp. 45–51, 2013.

[19] P. Legg, “Guest Editorial : Emerging Trends in Research for Insider
Threat Detection Guest Editorial : Emerging Trends in Research for
Insider Threat Detection,” JoWUA, vol. 5, no. 2, pp. 1–6, 2014.

[20] “DFRWS 2008 Forensics Challenge Challenge Data and
Submission Details,” 2008. [Online]. Available:
http://www.dfrws.org/2008/challenge/submission.shtml. [Accessed:
18-Aug-2014].

[21] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin,
“ReSurf: Reconstructing Web-Surfing Activity From Network
Traffic,” IFIP Netw. Conf., pp. 1–9, 2013.

[22] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms, “ClickMiner :
Towards Forensic Reconstruction of User-Browser Interactions
from Network Traces Categories and Subject Descriptors,” Proc.
2014 ACM SIGSAC Conf. Comput. Commun. Secur. ACM, pp.
1244–1255, 2014.

