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 
Abstract— Investigating insider threat cases is challenging 

because activities are conducted with legitimate access that 
makes distinguishing malicious activities from normal activities 
difficult. To assist with identifying non-normal activities, we 
propose using two types of pattern discovery to identify a 
person’s behavioral patterns in network data. The behavioral 
patterns serve to deemphasize normal behavior so that insider 
threat investigations can focus attention on potentially more 
relevant. Results from a controlled experiment demonstrate the 
highlighting of a suspicious event through the reduction of events 
belonging to discovered patterns. 
 

Index Terms—behavior, insider threat, pattern recognition  
	

I. INTRODUCTION 

nsider threat involves malicious activity conducted with 
legitimate access [1], [2]. Legitimate access may be granted 

to an individual or impersonated by another entity [3], but 
because of the legitimate access, the nefarious activities are 
difficult to distinguish from normal actions until damages 
have occurred [4]. Upon discovering damages, an 
investigation then attempts to identify and analyze relevant 
fragments of computer data to piece together a probable 
explanation, or narrative, of events that transpired. This task is 
increasingly challenging because of the ever-increasing 
volume of digital data. Tools and technologies are necessary 
to efficiently triage data to find the relevant data items.  

This paper proposes discovering patterns in user web 
activity to distinguish between accesses that conform to 
normal behavior from those that do not. The intent is that an 
investigation of an insider threat case can start with reviews of 
accesses that are inconsistent with a user’s typical behavior 
patterns. The pattern discovery is an individualization process 
used to identify the anomalous events, during an investigation 
of an insider threat case. This is different from insider threat 
detection, which attempts to identify an insider threat actor 
from a set of actors [3]. The patterns from the pattern 
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discovery are not used to uniquely identify the individual 
because the patterns may not be unique to only a single 
individual.  

Web usage is contained in packet capture (PCAP) files. 
PCAP files contain low-level network frames of how the 
computer performs the underlying mechanics to make 
networked communication possible —determining the actions 
taken by the user that generated the frames takes technical 
expertise. To automate this task, this paper presents algorithms 
that extend alignment and bigram pattern discovery algorithms 
to identify behavior patterns in web usage data. Alignment 
pattern discovery leverages the Needleman-Wunsh [5] 
pairwise alignment algorithm from the bioinformatics domain, 
guided by a clustering algorithm that accounts for both content 
and edit distance similarity. The bigram pattern discovery uses 
a modified incremental activity recognition algorithm [6] that 
accepts patterns based on statistical expectation of occurrence. 
The two algorithms are complementary: the alignment pattern 
discovery aims to find patterns consistent across sessions 
while the bigram pattern discovery incrementally expands 
adjacent activities to find larger patterns.    

II. BACKGROUND 

One area of research into insider threat detection leverages 
normal user baseline behaviors to perform anomaly detection. 
These approaches leverage the assumption that behavioral 
patterns are detectable from a person’s behavior to build 
models of the users normal or abnormal behaviors. 

A. Insider Threat Detection with Behavior Profiles 

In Salem, et al.’s [3] survey of insider attack detection 
research, the authors identified web user profiling as a 
potential means to detect insider threat instances of stolen or 
borrowed credentials. The method used support vector 
machines the features of IP address, time of access, HTTP 
request method, and transfer size to detect instances of stolen 
credentials. 

Liu, et al. [7] monitors system calls to leverage the benefit 
of complete monitoring and tamper-resistance. The authors 
attempt n-gram feature representation, citing successful 
application in external threat detection. However, they did not 
achieve similar results using n-gram features for insider 
threats. They attribute the difference in success due to the lack 
of change in application response from an insider using proper 
access rights, versus an outsider attack that does not. 

Parveen and Thuraisngham [1] use unsupervised learning to 
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address unlabeled log data in the insider threat problem 
domain. Due to proper authorization in insider threat, log data 
is unlabeled because it does not readily show differences 
between normal and abnormal entries. Their work is similar to 
Lane and Brodley [8], which uses user UNIX command logs 
in anomaly detection. Both works assume that daily, 
consistent sequences are evidence of normal behaviors and use 
them to identify threats as significant excursions from the 
norm.  

Legg, et al. [9] detect insiders through activity comparisons 
between the current daily observations, previously recorded 
observations, and observations from others in the same role. 
Their work used the CMU-CERT data, which included login, 
USB device, e-mail, web, and file access logs and synthetic 
scenarios that included similar fields. The observations are 
profiled in a tree-structure that is consistent between all users 
and roles to enable efficient comparison. Similarly, previous 
recorded behaviors are included in the “normal” profile, unless 
an attack was detected.  

B. Behavior Profiles from Web Usage 

Yang [10] created user profiles that describe repeating 
elements in a user’s activity. The recurring nature of behavior 
was found in repeated visits to certain sites across sessions, 
repeated visits to the same site within a session, and the 
pattern of site visits. A session is defined as a continuous 
period of user web activity. Yang’s support-based profiling 
technique provided the best results, where support was 
calculated as the number of sessions containing a discovered 
behavior pattern divided by the total number of sessions of a 
given user. Against a data set of 100 users, she found support-
based profiling could achieve as high as 87% identification 
accuracy, if given a sufficient number user sessions and a 
large sliding window size to mine patterns. In cases with only 
a small sample of users, lift-based profiling, which is the 
frequency of a pattern within a user’s session divided by the 
frequency of the pattern across all users, performed better. 

 Banse, et al. [11] performed behavior-based tracking 
using a Multinomial Naïve Bayes (MNB) classifier on 
Domain Name System (DNS) queries. An MNB classifier was 
selected for its computational complexity advantage over more 
advanced classifiers, such as support-vector-machines (SVM). 
Their goal was to identify the same user across multiple 
sessions in a data set that included 2100 users and where each 
user was represented by dynamic IP addresses, refreshed after 
a fixed amount of time. In cases where an IP address was 
classified as multiple users, the cosine similarity metric 
resolved the ambiguity. The combined MNB and cosine 
similarity model achieved as high as 88.2% identification, 
finding that user behaviors were stable provided sufficient 
data for a characteristic pattern to emerge. 

McDowell [12] compared destination IP and DNS query 
methods of behavior modeling for anomaly detection. The 
data set was collected from a commuter military university to 
mimic traffic behavior from a government or corporate office. 
Their results using Naïve Bayes and K-Nearest-Neighbor 
classifiers found that DNS query performed better than 

destination IPs, but in general, did not achieve identification 
rates as high as either Yang [10] or Banse, et al [11]. 

The related area of research of anonymizers and realistic 
web traffic generation is motivated by evidence that web 
usage behavior is sufficient to identify a person. Banse, et al. 
[11] provided a disclaimer that some queries, despite using 
pseudonyms, still leak personally-identifiable information. 
Song, et al. [13] similarly discovered statistical fingerprints of 
behavior that reveal the host. The fingerprints are leveraged to 
classify individuals into groups, obfuscating the individual. 
The behavioral signature of the group is then used to generate 
representative network traffic without comprising personally 
identifiable information. 

III. METHODOLOGY 

The insider threat context for the proposed approach is 
where the forensic examiner is attempting to find the 
incriminating activities within the suspect’s web usage 
activity. The overall process, shown in Fig. 1, begins with a 
preprocessing step that categorizes the sites visited to produce 
a linear sequence of events. The event sequences are necessary 
to perform the pattern discovery. The pattern discovery is an 
individualization process because the event patterns 
correspond to the individual’s behavior. The data reduction 
step leverages this knowledge to deemphasize events that are 
attributable to the individual’s typical behavior, leaving the 
unexplained events for further forensic examination. 

 
Fig. 1.  Methodology Overview. 

 

A. Pre-processing: Network data as a timeline sequence 

The preprocessing step has several purposes. The first is to 
collapse multiple sequential visits to the same site. The effect 
of this collapse is that the ordering is the salient feature, rather 
than the duration of site visit. Site visit duration may be 
difficult to capture given the statelessness of web traffic. That 
is, it is difficult to know from just web traffic data whether a 
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user left the terminal, or is conducting activities that do not 
generate network activity. 

 Second, site visits from secondary links are removed, such 
as those for advertisements. These web activities are based on 
the site’s behavior and not actually reflective of the user’s 
behavior.  

Third, the preprocessing categorizes the sites as a reflection 
of the user goal or target. For example, visits to www.cnn.com 
and www.foxnews.com are both categorized as a news site 
visit. This can be done through organic keywords that reveal 
the category of websites or through a search of commercial 
databases, such as BlueCoat (www.bluecoat.com) or 
TrustedSource (www.trustedsource.org). 

B. Pattern Discovery 

The categories extracted from preprocessing become 
terminals in an activity sequence. From there, the activity 
sequences go through two kinds of pattern discovery  to 
extract a user behavior pattern. The top-down approach uses 
alignment-based pattern discovery to identify overarching 
trends across sessions. Examples of overarching trends include 
Yang’s example [10] where a person always starts a session 
by going to cnn.com. The bottom-up pattern discovery uses 
bigram-based pattern discovery, where activities that 
frequently occur together, in order, are considered patterns. In 
contrast to alignment, bigram pattern discovery starts locally 
and expands the patterns outward. 

 
1) Alignment-based Pattern Discovery 

The alignment-based pattern discovery uses the Needleman-
Wunsh algorithm [5], [14] for pairwise alignment of two 
sequences. The Needleman-Wunsch algorithm, shown in 
Algorithm 1, requires a scoring system that rewards aligned 
symbols and penalizes gaps and mismatches.  

A score matrix and a corresponding traceback matrix (lines 
1 and 2) record the alignment path that determines aligned 
positions and insertions of necessary gaps. The algorithm has 
an O(mn) time and space complexity, where m and n are the 
length of the two sequences. Needleman-Wunsh progressively 
builds a multiple sequence alignment from a series of pairwise 
alignments as a performance consideration because 
simultaneous multiple sequence alignment algorithms incur an 
exponential computational complexity of O(2knk), where k is 
the number of sequences [15, Ch. 6]. The pairwise progression 
incrementally incorporates additional sequences to past 
alignments and back-propagates gaps into previous alignments 
when gaps are necessary to align the newest sequence. The 
trade-off of using pairwise alignment is that the overall 
alignment is sensitive to the order in which sequences are 
incrementally aligned due to the subsequently added gaps. To 
minimize gaps, a similarity matrix using clustering first 
identifies most similar sequences in a greedy approach based 
on a combined similarity measure as the arithmetic mean of 
content distance and edit distance. The reason why two kinds 
of similarity measures are used is to capture different aspects 
of similarity.  

Algorithm 1: Needleman-Wunsh Alignment 
Input: seq1 [1..m] : m-length string sequence 
Input: seq2 [1..n] : n-length string sequence 
Input: seq2 [1..n] : n-length string sequence 
Input: init_penalty : initial misalignment penalty, ≤ 0 
Input: gap_penalty : penalty for introducing gap, ≤ 0 
Input: match_reward : reward for alignment, ≥ 0 
Input: mismatch_penalty : penalty for non-alignment, ≤ 0 
Output: align1 [1..x] : alignment of seq1 to seq2, x ≥ m 
Output: align2 [1..y]: alignment of seq2 to seq1, y ≥ n 
Output: alignment_score : higher score is greater alignment

1 allocated score_matrix[m+1][n+1] 
2 allocate traceback_matrix[m+1][n+1] 
3 initialize alignment_score = 0 
4 for i = 1 to n  
5  score_matrix[i][0] = i * init_penalty 
6  traceback_matrix[i][0] = “up” 
7 end 
8 for j = 1 to m  
9  score_matrix[0][j] = j * init_penalty 

10  traceback_matrix[0][j] = “left” 
11 end 

 
12 for i = 1 to n 
13  for j = 1 to m 
14   int s 
15   if (seq1[j-1] == seq2[i-1] then s = match_reward 
16   else s = mismatch_penalty 
17   int diag = score_matrix[i-1][j-1]+s 
18   int up = score_matrix[i-1][j]+gap_penalty 
19   int left = score_matrix[i][j-1]+gap_penalty 
20   score_matrix[i][j] = max(diag,up,left) 
21   traceback_matrix[i][j] = max(“diag”, “up”, “left”) 
22  end 
23 end 

 
24 i = n;  j = m 
25 while ([i][j] != [0][0]) 
26  if (traceback_matrix[i][j] == “diag”) then 
27   align1.prepend(seq1[j-1]) 
28   align2.prepend(seq2[i-1]) 
29   i=i-1; j=j-1 
30  else 
31   if (traceback_matrix[i][j] == “left”) then 
32    align1.prepend(seq1[j-1]) 
33    align2.prepend(“-”) 
34    j=j-1 
35   Else 
36    align1.prepend(“-”) 
37    align2.prepent(seq2[i-1]) 
38    i=i-1 
39   end 
40  end 
41 end 
42 assignment_score = score_matrix[m+1][n+1] 
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Content similarity takes into account the bigram patterns, 
even if they are not aligned [6]. Content similarity is a 
combination of precision and recall, which are defined: 
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The bigram(v) function returns the set of bigrams from the 

sequence, v, and the magnitude of the intersection that is in the 
numerator of equations (1) and (2) is the number of common 
bigrams, counting duplicates.  

Edit distance takes into account similarity when there is 
alignment, even though bigram patterns are not preserved. To 
produce a result that can be used with content similarity, the 
edit distance is normalized by the length of the longer 
sentence. This way, both content and edit distance similarity is 
on a range between 0 (completely dissimilar) to 1 (identical).  
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 Each cell in the similarity matrix is populated with 

similarity measures such as edit distance normalized to the 
longer sequence length. Then, the ordering begins with the 
two-most similar sequences and adds the remaining most 
similar sequence until the ordering includes every sequence, 
creating a guide-tree. Pair-wise alignment then uses the 
ordering to determine the incremental sequence of alignments. 

 
2) Bigram-based Pattern Discovery 

Bigram-based pattern discovery identifies patterns bottom-
up, where activities that occur together in the same order form 
a pattern. The bigram-based pattern discovery algorithm, 
shown in Algorithm 2, is a modification of Peng, et al.’s [6] 
work in activity recognition. Two adjacent activities form a 
bigram, but a bigram is only accepted as a pattern if the 
bigram’s joint-occurrence frequency is larger than the 
bigram’s expected marginal frequency, tested using the chi-
square test (line 27) on each bigram. Calculating chi-square in 
equation form shorthand is possible because there are only two 
items in the test. 
 Peng, et al.’s [6] attempt to identify similarities between 
bigrams in calculating significance. This was removed 

because these instances can be better captured under the 
alignment-based algorithm.  

Another modification was made to the accept bigrams that 
occur exclusively together as significant. In these instances, 
line 27 will produce a divide-by-zero error. The 
implementation accepts these bigram if they occur over a user-
defined frequency, despite not passing the chi-square test. This 
modification was done to better match the intent of the pattern 
discovery. 

 
Algorithm 2: Bigram Pattern Discovery  
Input: W [1..n] : list of n sequences 
Input: m : merge threshold, ≥ 0 
Output: VL[0..p] : list of combined activities at level L 
Output: WL : W rewritten with VL at each level  
 

1 initialize L=0  
2 initialize R : map of bigrams (1st symbol, 2nd symbol) 
3 V0 = terminals in W; W0 = W;  
4 do 
5  L++ 
6  (WL, VL) = collocation(WL-1,VL-1,L,R) 
7 until VL  is empty 

  
8 function collocation(WL-1,VL-1,L,R) 
9  initialize jft : stores frequency of the bigram 

10  initialize mft1: stores frequency of  first symbols 
11  initialize mft2: stores frequency of second symbols  
12  foreach bigram in WL-1 
13   increment bigram count in jft 
14   increment bigram’s 1st symbol count in mft1 
15   increment bigram’s 2nd symbol count in mft2 
16  end 

  
17  foreach bigram in jft 
18   T = total number of bigrams in jft 
19   A = bigram count in jft 
20   E = bigram’s 1st symbol count in mft1 
21   G = bigram’s 2nd symbol count in mft2 
22   C = E - A 
23   B = G - A 
24   F = T - E 
25   H = T -G 
26   D = F - B 
27   chi = T*((A*D)-(B*C))2 / (G*H*E*F) 
28   if (chi ≥ m) 
29    add bigram to VL 
30    add bigram to R 
31  end 
32  rewrite WL in VL 
33 return (WL,VL) 
 

3) Assumptions 
We assume that the user does not interfere with the 

observation process and does not deliberately attempt to defeat 
the recognition system. Banse, et al. [11] identify some 
measures that complicate behavior-based tracking. 
Anonymizers like Tor obfuscate the destination IP address, 
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therefore preventing classification of destination IP site. 
However, using anonymizers may be itself a suspicious 
behavior so detecting Tor traffic satisfies the goal of 
identifying suspicious behavior. Caching may also complicate 
sequence construction if they do not produce network traffic in 
the terminal assignment pre-processing step. Dynamic IP 
addresses are problematic if a single user is confused as 
multiple users because it decreases the sampling for behaviors. 
Range Queries, which hides user queries with random dummy 
queries, adds significant noise to pattern discovery. 

The chi-square test will reject bigrams of symbols that exist 
only as a bigram because too many variables in the equation 
are zero. However, if the bigram frequently appears in joint 
frequency table, then rejecting the bigram produces counter-
intuitive response based on the intent of pattern discovery. 
Thus, in addition to checking for divide by zero values, the 
chi-square test checks for situations for this occurs.  

The implementation retains a history of bigram 
combinations at each level in VL that makes the hierarchy 
evident. The highest level WL define the S productions in the 
inferred grammar.  

Bigrams are sensitive to the rewrite process. For instance, if 
AB and BC are both significant bigrams, ABC can be written as 
either (AB)C or A(BC). Using alignment-based pattern 
discovery in concert mitigates this effect.  

IV. EXPERIMENT 

Greitzer and Ferryman [16] identified a lack of appropriate 
data and ground truth in developing and evaluating insider 
threat tools. As a pilot study, we captured a user’s network 
traffic data over the course of three days. Truth data was 
recorded so that the actual user browsing sequence was 
known. Wireshark’s [17] dumpcap utility was used to capture 
the packets.  

A synthetic insider threat inject scenario asked the user to 
visit www.HSBC.com during the middle of the second 
session. This site was selected because it is not suspicious site 
based on the URL (TrustedSource categorized the link as 
minimal risk with a banking web category). This was done 
to mirror the fact that no explicit policy should exclude the 
user from performing this action and that the user has 
legitimate privilege to perform this action. However, the act of 
visiting this banking website interrupts the user’s normal 
habits on when they typically carry out banking tasks with 
shopping activities. The HSBC visit is also not uniquely 
identifiable based on visit frequency, as there are other sites 
only visited once.  

In this regard, this scenario considers both the normal user 
behavior, as well as the malicious behavior to be detected [4]. 
Similar to the scenarios generated in [9], using a banking site 
as the anomalous observations fits an insider threat narrative 
where the actor is confirming payment after completing some 
kind of malicious activity. The injection testing approach, 
similarly used in [16] and [18], also addresses the privacy 
concerns of the captured material while ensuring presence of 
known insider threat data. 

Two runs were conducted on this scenario to examine 
sensitivity to the preprocessing step that generates the activity 
sequences. The first run uses a set of five activities while the 
alternate run increased the activity set by one to better capture 
the webmail URL. In both cases, the injected insider threat 
activity survives the reduction process for further 
investigation. 

A. Initial Run with Five Activity Terminals 

To examine reduction based on individualization in pattern 
discovery, the process deemphasizes events attributable to a 
discovered pattern. With the injected scenario, the site visit to 
www.HSBC.com should not be deemphasized. 

Fig. 2 shows the activities from the three sessions, t1, t2, 
and t3, consisting of 41 total activities. The red highlights the 
scenario injected event. 

The sessions do not include activities from ad services, 
typically indicated by the referred-from field in the stream 
because they are not reflective of user-driven activities. The 
sessions also do not include activities caused by background 
services such as antivirus updates or operating system updates 
for the same reason.  

The pre-processing step uses the IP address metadata and 
organic keywords retrieved from ipaddress.com as well as 
McAfee’s Threat Intelligence database at 
www.trustedsource.org to classify the different activities into 
terminals. Fig. 3 shows the sequences of events consisting of 
five categories: edu (education), socnet (social 
networking), news, shopping, and banking.  

 

 
Fig. 2.  User activities from three sessions: t1, t2, t3. The red highlights the 
scenario injected event that reduction process should not eliminate. 

 

 
Fig. 3.  Sessions rewritten by categories. 
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 The alignment-based inference process identified activity 
patterns that occur across the all of the sessions, shown in Fig. 
4. The events denoted in blue are those that occur similarly 
across t1, t2 and t3. The gray events denote breaks between 
aligned events.  

 
Fig. 4.  Alignment of the three sessions. The blue events correspond to 
alignments. The gray dashes correspond to breaks between aligned events. 

 
Events in the sessions that correspond to the blue events in 

the alignment are grayed out in Fig. 5 to show that they are 
deemphasized.  

 
Fig. 5.  Sessions with aligned symbols deemphasized. 

 
Bigram pattern discovery identifies frequent activity 

patterns, focusing on increasingly longer patterns of adjacent 
symbols. Deemphasizing these patterns from the sequences in 
addition to those deemphasized by the alignment-based pattern 
discovery further reduces the number of remaining activities. 
Bigram pattern discovery identified the following patterns, 
where nested-bigrams are chunked with parenthesis: 

shoppingbanking, 
socnetnews 
edusocnet 
socnetedu 
newssocnet 
(edusocnet)news 
(shoppingbanking)socnet 
 edu(shoppingbanking) 
(socnetedu)(shoppingbanking) 
(socnetedu)shopping 
(edusocnet)banking 

 
The vocabulary terms signify additional behavioral patterns. 

The parentheses indicate a previously merged bigram within 
another bigram. Activities that are unexplained by the 
alignment are matched against the vocabulary list. Sequences 
that appear in the vocabulary list are also de-prioritized, 
shown in washed-out green in Fig. 6. The bigram discovery 
process is independent of the alignment inference process. 
Therefore, the results from the bigram process can reduce the 
event sequences on their own. By using both approaches, 
activities can be explained away using both methods. An 
activity exclude through alignment can still be used as part of 
a bigram to exclude activities not explained by the alignment 
discovery process. To highlight these occurrences, activities as 

part of bigrams that were deemphasized in the alignment step 
are relabeled green, but retain the gray circle.  

 In comparing results between the two processes, the 
alignment included two adjacent activities, edusocnet, that 
was also discovered in the bigram inference approach. The 
alignment also included another adjacent pair, edu and 
shopping, which did not appear on the bigram vocabulary 
list. However, edushopping appears in the vocabulary list 
three times, under edu(shoppingbanking), 
(socnetedu)(shoppingbanking) and 
(socnetedu)shopping, marking it as part of other 
frequent patterns. 

 

 
Fig. 6.  Sessions after deemphasizing events from discovered alignment and 
bigram patterns. 

 
At the point of investigation in Fig. 6, only two activities 

remain emphasized across the three sessions that are 
unexplained by discovered behavior patterns. These two 
activities indicate where to begin the investigation, which 
includes the artificially injected event. 

B. Alternate Run with a Sixth Activity Terminal 

The initial run uses five activity categories in the activity 
sequences. This run adds an additional activity terminal to 
investigate the sensitivity of the pattern discovery algorithms 
on the preprocessing step. 

The URL for the webmail activity had an “.edu” 
extension and was assigned the edu terminal based on the 
ipaddress.com classification. We repeat the individualization 
process and obtain a reduction that categorized webmail 
activity with a comm terminal, as a better reflection of the 
actual activity. This expanded the category size to six. As 
expected, increasing the variety of symbols increases the 
distance between sequences and this change produced two 
clusters: (t1, t2) and (t3). An increase in the number of clusters 
means that there is less likely to be a single alignment pattern, 
because the alignment pattern from one cluster does not 
transfer to other clusters. This is illustrated in Fig. 7, where t3 
does not have any activity in gray; all washed out activities in 
t3 are due to bigram patterns. 

The resulting change is a decrease in the amount of 
activities explainable as part of a pattern, leaving five 
activities unattributed. Most importantly though, the injected 
insider threat activity, denoted in red, remains in the activity 
set for further investigation, even with the additional terminal. 
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The introduction of the comm terminal also changed the 
bigram vocabulary: 

shoppingbanking 
commsocnet 
socnetnews 
(commsocnet)banking 
(commsocnet)news 
socnetedu 
((commsocnet)banking)shopping 
socnet(commsocnet)banking 
edusocnet 
 

 

Fig. 7. Sessions using six categories. Gray denotes de-emphasis from 
alignments. Green denotes de-emphasis from bigrams. The black and red are 
remaining events from reduction. 

 

C. Discussion 

The motivation for using web usage data is based on 
successes in earlier works [10]–[12]. An advantage of the 
proposed approach is not needing to define a sliding window 
parameter. The alignment-based pattern discovery compares 
entire sessions and the bigram-based pattern discovery 
iteratively expands a window size until no patterns are found. 
The other advantage of the proposed approach is the 
preprocessing that aggregates websites of the same type, 
reducing sensitivity to dynamic IP assignments which may 
treat them as different sites. 

With regards to disadvantages, the proposed process 
assumes that attacks are preceded by observable events to 
indicate future malicious activity [19] in addition to the 
supposition that most malicious behavior is anomalous. These 
assumptions, however, are still subject to debate within the 
insider threat research community. The impact of these 
assumptions is that if a suspect does not have a routine 
behavior pattern, then the pattern discovery would not find 
patterns to inform the reduction process and fail to eliminate 
activities for examination. 

In addition, web traffic alone may not be sufficient to fully 
reconstruct a criminal timeline. For example, the Digital 
Forensics Research Conference 2008 scenario [20] included 
both packet captures and a memory dump, both of which were 
essential to attributing culpability of the crime. This 
disadvantage is shared across all insider threat approaches that 
only examine one set of features. To address this issue, 
Eldardiry, et al. [18] and Legg, et al. [9] propose multi-domain 
approaches to insider threat detection. The pattern discovery 

methods proposed in this paper, are extensible to incorporate 
multiple domains. In the activity recognition domain, Peng, et 
al. [6] created a hierarchy to organize multiple sensor 
readings, before conducting the pattern discovery to mine 
patterns that include activities across sensors. Similarly, a 
hierarchy can organize usage activity across multiple domains, 
such as file access or log-in activity, though the additional 
domains must also employ pre-processing to produce 
sequences of discrete symbols.  

V. CONCLUSION 

Insider threat is challenging to address because the insider 
attack uses legitimate access, making it difficult to separate 
normal activities from those that are not. This paper proposes 
using pattern discovery of network data to identify an 
individual’s behavior patterns. With known behavior profiles, 
an investigator on an insider threat case can focus on activities 
that the actor had authority to perform, but does not conform 
to past behavior. The forensic examiner can then focus on a 
reduced set of user activities in the investigation. Results on a 
controlled lab data set retained the injected anomalous activity 
through the reduction process. 

For future work, the pattern discovery section relies on 
preprocessing to generate activity sequences. Testing this 
process on a larger scale will require automating the 
preprocessing step, such as those in [21], [22]. The 
preprocessing will also need to overcome additional issues 
such as networks that use caching, which may require 
different classification techniques.  

Additionally, pattern discovery also requires further 
investigation to determine the set of categories that accurately 
represent web activity, yet still produce activity patterns. 
Identifying this set requires a data collection of multiple users 
over a longer period.  

Finally, this approach may be useful in generating data that 
mimics usage behaviors, but does not compromise the privacy 
of the users in the data collection. To produce research data of 
a user’s usage behavior, a generator uses the discovered 
patterns to create an artificial web usage log. The generator 
reverses the pre-processing step by selecting a site from the 
category, a generator can choose from a list sanitized sites that 
do not leak personally identifiable information from the source 
data collection. 
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